漂砂における相似則を考慮した2次元造波水路実験による 波浪外力下の土砂移動に関する考察

豊橋技術科学大学 学生会員 ○諌山 恭平, 佐藤 隼可, 澤田 弥生 豊橋技術科学大学 正会員 松田 達也, 三浦 均也

1. 研究背景と目的

波浪場における土砂の流動方向や海底地盤の液状 化による土砂流動への影響に関する既往の研究は、 地盤内の応力変化・掃流力・透水力等の要素が複雑 に影響しあうため、海岸工学分野では掃流力に着目 した表層の土砂移動を、地盤工学では地盤内の応力 変化に着目した液状化を対象に、それぞれの分野で 別々の検討が行われてきた。しかし、波浪場におけ る土砂移動は海底表層の流速により掃流力と地盤内 部の浸透作用による応力変化が密接に関わっている ことから海岸工学の視点と地盤工学の視点を融合さ せ、波浪場における土砂流動について検討する必要 がある。本研究は、2次元造波水路を用いて波浪外 力による海底地盤の挙動を検討する。ただし、フル ード相似則の幾何学的縮尺を適用した土質の選定で は、実際の土砂移動現象を再現できない可能性があ ることから、特に、流れ場の相似則と土砂移動に関 する相似則についても考察したうえで、まず、地盤 内の応力変化に着目した検討を行ったので報告する。

2. 実験概要

2.1 実験装置および計測器

本実験は全長 25m の造波水路内に長さ 2.5m、幅 0.6m、高さ 0.2m の移動床区間を設け、各種地盤材 料を実験条件に応じて堆積させた。移動床より沖側 には長さ 5m、高さ 0.2m、勾配 1/25 の不透水スロー プを設置する。実験では、波高(容量式波高計: KENEK 製)を図 1 の示す位置で計測した。設置位 置はスロープ先端から岸側に 2.35m、地盤材料の先 端から沖側に 1.55m とした。また、地盤内の水圧変 化を計測するため、小型間隙水圧計 (P306:SSK 製) を地盤深度 z=0.0、0.05、0.10、0.15、0.20m の計 5 か所設置した。移動床の挙動を観察するため、ビデ オカメラ (29.97fps) で撮影した。

2.2 水理模型実験における縮尺¹⁾

水理模型実験を行う際には、実物に対して縮尺を小 さくとる必要があるが、あまり縮尺を小さくとりす ぎると、水深の低下から底面摩擦や表面張力の影響 が大きくなる。そこで、本実験はフルード則を適用 し、実験装置の規模から縮尺比λ=1/25の実験を実施 した。

2.3 浸食・漂砂における相似則(Dean Number)

前述のフルード相似則を適用して地盤材料を幾何 学的に縮尺すると、例えば、平均粒径 0.2mm の砂の 場合、0.008mm となりシルト質の材料となってしま う。これでは材料特性が異なり、実現象を再現する ことが難しくなる。そこで、本研究では、鈴木(2015) ²⁾に倣い、Dean Number³⁾を適用して、土粒子の沈降 速度についてフルード則を満たす方法を適用した。

$$\left\{\omega/(H/T)\right\}_{m} = \left\{\omega/(H/T)\right\}_{m}$$
(1)

ここで、Hは波の波高、Tは波の周期、 ω は土粒子の 沈降速度を表している。下添え字のpは prototype を、 mは model をそれぞれ示している。

例えば Prototype が豊浦砂 (d_{50} =0.17mm)の場合、 Dean Number を適用すると、模型地盤の平均粒径は $d_{50|m}$ =0.07mm となり、実物と同様の砂質土を用いれ ば良いことになる。

2.4 実験条件

前述した相似則を考慮して、豊浦砂と硅砂 8 号の 2 種類の地盤材料を用い、相対密度 *D*_r=40%で管理し た。外力条件は,参考文献 4)を参考に、波高 *H*=0.12m, 周期 *T*=1.6s の規則波を与えた。

実験結果と考察

3.1 土砂の移動

図2に実験開始90秒経過時の写真を示す。本実験

では画像の右から左に向かって波が進行している。 どちらの土砂においても時間の経過と共に、表面の 土砂が波の進行方向とは逆向きの方向に移動してい ることが観察でき、スロープの先端まで土砂が移動 していることが確認された。

図2 土砂移動の様子:豊浦砂(a)と硅砂8号(b)

3.2 地盤内の応力変化

地盤内の応力変化を検討するため、間隙水圧計の 計測データより動水勾配を算出した。図3に動水勾 配の経時変化を示す。珪砂8号は豊浦砂に比べると、 深度方向に水圧変動の位相差が生じるため、動水勾 配が大きくなることがわかった。また、限界動水勾 配は豊浦砂が icr=0.9096、硅砂8号 icr=0.7824 である ことから、豊浦砂は限界動水勾配を下回っているの で地盤は安定を保った状態であるのに対し、珪砂8 号においては限界動水勾配に近い値を示しており、 地盤の強度低下が生じていることが考察できた。

3.3 圧力変化を考慮した土砂移動

既往の液状化に関する解析結果等では、液状化が 生じることが報告されている⁴⁾。本実験における硅 砂8号の実験結果でも、同様に過剰間隙水圧の上昇 に伴い、地盤の強度低下が生じていることを示すこ とを確認した。一方、豊浦砂の場合は実物換算する と、平均粒径は大凡 0.36mm 程度となり粗砂に近い 地盤と分類できる。既往の結果では、透水性が高く なると地盤内の水圧伝播の位相差が小さくなり、有 効応力の変化が生じなくなることが言われており、 実験結果でも同様に透水作用の影響も小さくなった ことが確認できた。土砂移動に関してはどちらも時 間経過とともに、地盤表面にディップルが発生した。 珪砂8号は豊浦砂に比べ粒径が小さいため、山と谷 の大きさが安定せず変動を繰り返した。豊浦砂の場 合はディップルの振幅も大きく形状が保たれていた。 これは、掃流力にも起因すると考えられるが、今後

詳細を検討する必要がある。

図3 動水勾配の経時変化:豊浦砂(a)と硅砂8号(b)

4. 結論

波浪外力によって海底地盤は波の進行方向とは逆 の方向に移動することが確認した。地盤内部では水 圧変動の深度方向における位相差により珪砂8号に おいては動水勾配が限界動水勾配に限りなく近い値 となり地盤の強度低下が生じた。これにより、Dean Number を適用した地盤材料の選定により、実現象 を再現できる可能性を示すことができた。今後は掃 流力と応力変化を併せた土砂移動現象を詳細に考察 する。

参考文献

- 1) 下迫健一郎:水理模型実験,コンクリート工学 Vol.39, No.9, pp.134-136, 2001.
- 鈴木高二朗:大規模波動地盤総合水路施設における波動実験,ながれ, Vol.34, pp.255-260, 2015.
- Hughes, S. A.: Physical models and laboratory techniques in coastal engineering, World Scientific, pp.568, 1993.
- 海岸工学委員会:海岸波動[波・構造物・地盤の 相互作用の解析法],土木学会, pp.481-490, 1994.