中部大学	正会員	○余川	弘至	杉井	俊夫
防衛大学校	正会員	野々日	山栄人		
中部大学	非会員	近藤	敦之	伴	知寛
岐阜大学	フェロー会員	八嶋	厚		

1. 目的

平成23年3月11日に発生した東日本大震災によ り、海岸や浦・潟の埋立地などで、地盤の液状化が 発生し、戸建住宅などの小規模建築物には傾斜や沈 下などの被害が生じた(写真 1 参照).戸建住宅で液 状化による被害が多くみられた理由の一つとして, 地盤液状化時の設計方法が明確でないことがあげら れる. 平成 13 年国土交通省告示(以下,告示)第 1113 号の第2では、「地震時に液状化するおそれのある地 盤にあっては、建築物の自重による沈下その他の地 盤の変形等を考慮して建築物又は建築物の部分に有 害な損傷、変形及び沈下が生じないことを確かめな ければならない」とあるのみで、地震時の建物の沈 下量や地盤の沈下量に関して、明確な数値や検討方 法については示されていない. そのため, 戸建住宅 では、 F_L 値、 P_L 値および D_{cv} などの結果を参考に、 設計者により対策の必要性について判断されている. そこで本研究では,東日本大震災で多く確認され, 住宅の沈下・傾斜量に大きく影響すると考えられる 「ゆすりこみ沈下」に着目し、模型振動台実験、有 限要素法による2次元動的有効応力解析および粒子

法による2次元静的液状化解析を行った.

(a)千葉県我孫子市 (b)埼玉県久喜市 写真-1 戸建て住宅の液状化被害(傾斜・沈下)

2. 模型振動台実験の概要

液状化時の住宅沈下および地盤の変形を確認する ために、水平一方向に加振可能な電気油圧サーボ方 式の加振装置と前面をアクリル板とした剛土槽(内 寸:幅1,000mm×奥行き200mm×高さ800mm)を組み 合わせた振動台実験装置を使用し、1/50スケールの 模型振動台実験を行った(写真-2 参照).実験では, 液状化時の住宅沈下や地盤変形を確認することがで きるよう土槽に小型のカメラを設置した. 模型地盤 は、相対密度 50%を目標に、三河珪砂 6 号を地盤高 さ 450mm となるように水中落下法で作製した. 住 宅模型は、アクリル製の箱とアルミ板(重量物)によ りモデル化した.アルミ板は、接地圧が一般の木造 住宅と等価になるように重量を調整した、模型振動 台実験の振動台に入力した地震動は、周波数 2Hz, 最大加速度 350gal,入力時間 15 秒の正弦波である. 実験の状況を写真-2に、模型振動台実験のテーブル 上で計測された加速度の時刻歴を図-1に示す.

写真-2 模型振動台実験の状況

図-1 入力地震動

3. 有限要素法による2次元動的有効応力解析

土の相と水の相に関する力の釣り合いを考慮して 定式化された 2 次元有効応力解析プログラム LIQCA2D14¹⁾により,前述した模型振動台実験の再 現を試みた. LIQCA の詳細については文献 1)を参照 されたい.

図-2に再現解析に用いた有限要素メッシュを示す. 節点数および要素数は、それぞれ1,125 および1,040 である.メッシュサイズは、模型振動台実験と同じ 大きさとした.変位の境界条件として、底面は、水 平方向(x)、鉛直方向(y)、回転固定とし、側方の 境界は、水平方向(x)固定とした.水理境界条件と して、地下水面の位置を排水境界とし、その他の境 界面はすべて非排水境界とした.入力地震動は、有 限要素メッシュの底面から入力することとし、模型 実期時かい

表-1 地盤の材料パラメータ

初期間隙比	e 0	0.802
圧縮指数	λ	0.050
膨潤指数	к	0.006
無次元化初期せん断剛性	G_0/σ'_{m0}	687.5
疑似過圧密比	OCR [*]	1.200
変相応力比	M^*_m	0.682
破壊応力比	M_{f}^{*}	1.222
	\mathbf{B}_{0}^{*}	1300
硬化関数中のパラメータ	\mathbf{B}_{1}^{*}	70
	Cf	0
異方性消失パラメータ	cd	2000
ダイレイタンシーを粉	D_{0}^{*}	5.0
シュレイシンシー保数	n	3.7
塑性基準ひずみ	$\gamma_r^{p^*}$	0.010
弾性基準ひずみ	$\gamma_r^{e^*}$	0.030

4. 粒子法による2次元静的液状化解析

ここでは、大変形問題を解くための解析手法の 1 つである SPH (Smoothed Particle Hydrodynamics)法 ²⁾を用いた.構成式には、安田ら³⁾の提案した液状化 した土のせん断応力-せん断ひずみ関係を用い、液状 化後の変形について検討をした.図-4に安田らの提 案したせん断応力-せん断ひずみ関係の模式図を示 す.各種パラメータの設定方法については、文献 3) を参考に決定した.以下、この構成式のことを ALID モデルと呼ぶ.SPH 法の定式化については、文献 2) などを、ALID モデルの詳細は文献 3)を参照された い.

図-5 に再現解析に用いた粒子配置を示す. 粒子間 距離は 0.5m, 粒子数は, 地盤, 構造物, 底面および 側面の壁粒子を合わせて 4,863 個である. 振動台実 験を実スケールで再現した.変位の境界条件として, 底面および側面の壁粒子は, 水平方向(x), 鉛直方 向(y) 固定とした. 解析は, 重力加速度が 9.8m/s² になるまで徐々に増加させる自重法を用いた. 計算 時間増分は 0.00001 秒, 重力加速度を作用させる時 間は 30 秒とした.

ALID モデルの地盤の材料パラメータを表-2 に示 す.表中の液状化安全率については、国土交通省国 土技術政策総合研究所の「宅地の液状化被害可能性 判定計算シート」を利用して求めた.

図-4 液状化した土のせん断応力-せん断ひずみ関係

図−5 粒子配置

表-2 地盤の材料パラメータ

		-
初期間隙比	<i>e</i> ₀	0.8021
ヤング率	Ε	11200
ポアソン比	V	0.333
間隙水の体積弾性係数	K_f	2.6E+06
湿潤単位体積重量	γ_t	18.6
細粒分含有率	Fc	0.0
液状化安全率	FL	0.55

5. 模型振動台実験結果および解析結果

模型振動台実験,有限要素法による解析および粒 子法による解析それぞれの最終状況を図-6 に示す. 図-6中には実大規模スケールの沈下量を示し,解析 結果では,住宅近傍の拡大図も示す.いずれの解析 でも,実験で生じた沈下量を概ね再現できている. 一方,住宅周辺の地盤変形に着目すると,模型実験 では,住宅極近傍のみ大きく変形(ゆすりこみ沈下) している.有限要素法と粒子法を比較すると粒子法 の方が,より実験に近い変形を再現できていると考 えられる.

(上から模型振動実験,有限要素法,粒子法)

6. まとめ

本研究では、東日本大震災で多く確認され、住宅 の沈下・傾斜量に大きく影響すると考えられる「ゆ すりこみ沈下」に着目し、模型振動台実験、有限要 素法による2次元動的有効応力解析および粒子法に よる2次元静的液状化解析を行った.その結果、2 次元動的有効応力解析および粒子法いずれの方法で も、概ね模型実験の結果を再現することができた. しかし、有限要素法では、実験で見られるような「ゆ すりこみ沈下」の再現は難しいことが分かった.今 後、粒子法による検討を進め、より定量的な評価が できるように研究を進める予定である. 参考文献

1) LIQCA 液状化地盤研究所, LIQCA2D14(2014 年公開版)資料, 2014.2) 例えば, Lucy, L.B., A numerical approach to the testing of the fission hypothesis, *Astron. J.*, Vol.82, pp.1023-1024, 1977. 3)安田ら, 液 状化に伴う流動の簡易評価法, 土木学会論文集, No.638/III-49, pp.71-89, 1999.