名古屋工業大学 学生会員 ○常本 貴史, 栗本 悠平 名古屋工業大学 非会員 小林 聖二, Qiu Xiaoye The University of Newcastle 非会員 Glen J. Burton 名古屋工業大学 正会員 張 鋒, 岩井 裕正

Table1 マサ土の物性値

	Unit	Value
Liquid limit w_L	%	NP
Plasticity index I_p	%	NP
Specific gravity $G_{\rm s}$	-	2.66
Maximum dry density ρ_d	Mg/m ³	1.85
Optimum water content w _{opt}	%	13.7

本試験では、初期飽和度の違いによる力学特性の 違いを検証するために、不飽和土圧密試験機¹⁾を用 いて加圧板法により飽和度一定試験を実施した. 試 験に用いたセラミックディスクの空気侵入値(AEV) は1500 kPa である.なお、飽和度一定試験を実現す るために、間隙水圧と間隙水体積を同時に制御でき る PVC (Pressure/Volume Controller)を導入した.

試験は基底応力 ($\sigma_v^{net} = \sigma_v - u_a$, σ_v : 全応力, u_a : 間 隙空気圧)を 20 kPa 載荷した後, サクション ($s = u_a$ - u_w , u_w : 間隙水圧)を 100 kPa ($u_a = 500$ kPa, $u_w = 400$ kPa) 載荷し, 供試体の排水量が落ち着くまで放置し た. 排水量が安定したことを確認した後, 飽和度一 定制御に切り替え, 基底応力を 60 kPa/hr の載荷速度 で 20 kPa から 965 kPa まで載荷した. 飽和度一定制 御は, 間隙空気圧一定の状態で, 供試体からの排水 量を間隙水圧の増減によって調整する Glen ら¹⁾が提 案した手法を採用した. 飽和度一定に制御するため の条件式を以下に示す.

$$dV_{\rm w} - S_{\rm r\,(init.)} \, dV_{\rm v} = 0 \tag{1}$$

ここで、 dV_w :間隙水体積変化、 $S_{r(init.)} dV_v$:初期飽 和度と間隙体積変化の積である.一次元圧密時には、 間隙体積変化 (dV_v) は供試体断面積と供試体変位の 積 (Adh) より得られ、間隙水体積変化 (dV_w) は PVC で調節することで飽和度を一定に保持できる. また、圧縮試験の場合、載荷に伴い間隙体積は減少 することから、間隙水体積も減少させる必要がある. つまり、飽和度一定を保持するためには間隙水圧が 減少し、サクションは増加する.

1. はじめに

自然界に存在する地盤の多くは不飽和状態であり, 間隙に水と空気が混在する.そのため,不飽和土は 飽和土と比較して複雑な力学特性を示し,水理学的 特性を考慮しなければならない.一方,近年では飽 和土を対象とした構成則が数多く提案されており, 地盤の挙動予測にも飽和土の構成式を用いることが 多い.しかしながら,降雨による斜面崩壊など水分 量の変化に起因した地盤挙動を正確に予測するため には,不飽和土の力学特性を理解し,その特性を定 式化する必要がある.

本稿では、飽和・不飽和状態に依らず地盤材料の 力学特性を統一的に表現できる飽和・不飽和土の弾 塑性構成式の構築を目的とし、不飽和マサ土を用い た飽和度一定試験を実施した結果を報告する.

2. マサ土を用いた飽和度一定の一次元圧密試験

試験には 2mm 以下にふるい分けしたマサ土を使 用した.マサ土の粒径加積曲線を Fig.1,物性値を Table1 に示す.供試体作製時には,圧密試験機に設 置した圧密リングに所定のマサ土試料を入れ,直径 60 mm×高さ 10 mm,間隙比 0.65 を目標に,一層で 静的に締固めた.試験パターンは締固め試験から得 られた最適含水比付近と,その乾燥側と湿潤側の含 水比 2 ケースずつ,計5 ケースの目標含水比(w=9, 12, 15, 18, 21%) で行った.

Fig.2 マサ土を用いた飽和度一定の一次元圧密試験結果

	供試体作製時 (初期)			S _r 一定試験開始前		S _r 一定試驗終了後			
	<i>w</i> ₀	e_0	S _{r0}	w	е	Sr	$w_{\rm f}$	e_{f}	$S_{\rm rf}$
∇	8.5	0.642	0.35	7.4	0.613	0.32	5.3	0.453	0.31
	12.1	0.650	0.49	9.6	0.625	0.41	7.3	0.479	0.41
0	15.0	0.650	0.62	11.0	0.625	0.47	8.0	0.446	0.48
Δ	17.8	0.651	0.73	11.1	0.613	0.48	7.9	0.441	0.49
\diamond	21.8	0.660	0.88	11.5	0.623	0.49	8.5	0.455	0.50

Table2 試験時の供試体物性値

3. 試験結果

Fig.2(a)~(c)に飽和度一定の一次元圧密試験結果, Table2 に供試体作製時および試験開始前後における 供試体の物性値を示す. Fig.2(a)より,間隙比の減少 に伴い含水比は低下し、 $wG_s = eS_r$ 式(破線)から, 飽和度一定に保持されていることが確認できる. Fig.2(b)に着目すると、基底応力の増加によりサクシ ョンは増加し、サクション増分は初期飽和度によっ て異なると言える.また,試験開始時の飽和度が概 ね一致した実験ケースは、サクション増分に違いが 見られ、初期飽和度が高いほどサクション増分が小 さくなる傾向が得られた. Fig.2(c)に示す正規圧密線 の位置に着目すると, 乾燥側では湿潤側や最適含水 比と比較して,正規圧密線は上方に位置しており, 初期含水比が 12%のケースが最も高い位置にある. 一方、試験開始時の飽和度が概ね一致した実験ケー スの正規圧密線は、顕著な差が見られなかった.

Fig.3 は横軸を骨格応力 (σ " = $\sigma_v^{net} + S_r s$) で整理し た図である. Fig.2(c)と比較すると,乾燥側の場合, 正規圧密線は同様に上方へ位置したが,含水比 21% の正規圧密線は下方に移行した. これは, Fig.2(b) よりサクション増分の違いよる影響と確認できる. 今後はこれらの結果を踏まえ,「飽和度が小さいほど 正規圧密線が上に平行移動する」と仮定して開発し た飽和・不飽和土の弾塑性構成モデル²⁾の妥当性を 検証していく.

4. 結論

不飽和土圧密試験機を用いて,飽和度一定の試験 を実施した.その結果,基底応力増加によるサクシ ョンの増分は初期飽和度により異なる.正規圧密線 は,乾燥側は上へ位置し,湿潤側は試験開始時の飽 和度が一致したことから顕著な差が見られなかった.

参考文献

- G. J. Burton, J. A. Pineda, D. Sheng, D. Airey and F. Zhang (2015): Exploring one-dimensional compression of compacted clay under constant degree of saturation paths, *Géotechnique* (in printing).
- F. Zhang and T. Ikariya (2011): A new model for unsaturated soil using skeleton stress and degree of saturation as state variables, *Soil* and Foundations, 51 (1), 67-81.