魚骨型座屈拘束ブレース(FB-BRB)の開発に関する実験的研究

名城大学	学生会員	〇吉田	太智	名城大学総合研	开究所	賈	良玖
名城大学大学院	学生会員	閻	楊	名城大学	フェロー	葛	漢彬

1. はじめに

著者らは、従来の座屈拘束ブレース(BRB) の変形性能を向上させる為に、芯材の断面を 変化させた魚骨型座屈拘束ブレース (FB-BRB)の繰り返し載荷実験を行った¹⁾.こ の実験結果より、FB-BRBの主な機構である ネッキング進行箇所限定のための断面減少比 D,各変形部の伸びの許容値 E_s の妥当性を検 証することができた.そこで本検討では文献

1)の結果を踏まえ, FB-BRB の各種パラメータの最適値を調査する実験を行った. そして, 求めた最適値を 今後行われる実寸大サイズの FB-BRB の設計に用いることを目的としている.

2. 実験概要

FB-BRB は図-1 に示すようにストッパーを 1~2 個設置した芯材にアンボンド材を貼り付け,拘束材で芯材とフィラープレートを挟み込み,ボルトで固定する形状となっている. 表-1 に供試体概要を,図-2 に各種パラメータの詳細図を示す.本実験では各種パラメータの最適値を求めることを試みているため,実験供試体は橋梁等で用いられる制震ダンパーに比べ,大幅に縮小したものである.載荷パターンは1サイクル毎の漸増変位振幅繰り返し載荷であり,載荷パターン(A)では1サイクル目を 0.5%(変形可能長 *L* に対する伸びδの割合)とし,以降1サイクル毎に 0.5%増加させ,載荷パターン(B)では1サイクル目を 1.0%とし,以降1サイクル毎に 1.0%増加させている.

主_1

议 一							
No.	供試体名	<i>L</i> [mm]	$P_{s,y}/P_{u}$ [%]	$E_s[\%]$	S[個]	D [%]	
1	FB-BRB-D10-P50	670	50	_	1	10	
2	FB-BRB-E06-D10-P50	670	50	6	2	10	
3	FB-BRB-E06-D10-P75	670	75	6	2	10	
4	FB-BRB-E06-D10-P100	670	100	6	2	10	
5	FB-BRB-E04-D10-P100	670	100	4	2	10	
6	FB-BRB-E08-D10-P100	670	100	8	2	10	
7	FB-BRB-E04-D15-P100	670	100	4	2	15	
8	FB-BRB-E06-D5-P100	670	100	6	2	5	

供封休博画

Note: L=変形可能長, P_s,/P_u=ストッパーのせん断耐力と変形部の引張耐力の比, E_s=各変形部の伸びの許容値, S=ストッパーの個数, D=ネッキング進行箇所限定のための断面減少比

図-2 各種パラメータ詳細図

図-4 S=2[個]の供試体き裂進展・破断箇所比較

表-2 ストッパーが最初に動作した時のサイクル数と 芯材でき裂進展・破断した時のサイクル数

中央にストッパーを設 けた一般的な BRB にネ ッキング進行箇所限定の ための断面減少比Dを設 けた No.1 供試体ではス トッパー付近でき裂が進 展せず,最小断面位置で

No.	供試体名	ストッパーが最初に動 作した時のサイクル数 [Half cycle]	芯材でき裂進展・破断 した時のサイクル数 [Half cycle]	載荷 パターン
1	FB-BRB-D10-P50	—	19	(A)
2	FB-BRB-E06-D10-P50	13	19	(A)
3	FB-BRB-E06-D10-P75	13	19	(A)
4	FB-BRB-E06-D10-P100	7	11	(B)
5	FB-BRB-E04-D10-P100	5	11	(B)
6	FB-BRB-E08-D10-P100	9	11	(B)
7	FB-BRB-E04-D15-P100	5	9	(B)
8	FB-BRB-E06-D5-P100	11	19	(A)

き裂が進展したため D の効果を検証することができた(写真-1). 図-3 に示す平均応力-平均ひずみ関係か らストッパーが2個の場合,FB-BRBの機構である荷重の再上昇を確認できた.ストッパーのせん断耐力と 変形部の引張耐力の比 P_s,/P_uについて P_s,/P_u=50%以上ではストッパーの破壊は見られなかった一方, 文献 1) では P_{sy}/P_u =28%の場合ストッパーは破壊していた.このことから P_{sy}/P_u =50%以上とするのが妥当であると 考えられる. 各供試体の破断位置を比較したものを図-4 に, ストッパーが最初に動作した時のサイクル数 と芯材でき裂進展・破断した時のサイクル数についてまとめた結果を表-2 に示す. 各変形部の伸びの許容 値 E_sについて E_s=4, 6, 8%のとき,いずれも荷重が再上昇する現象が見られたが,図-4から E_s=8%では(即 ち No.6 供試体), 芯材中央の最小断面位置でき裂が進展しており, FB-BRB の特徴的な機構である塑性化す る箇所の分散を確認することができなかった.このことから本実験で用いたパラメータでは、E=4~6%が妥 当だと分かる.ネッキング発生箇所限定のための断面減少比 D について,図-4 から D=5%のとき(即ち No.8 供試体),ストッパー付近で破断しため,一般的な BRB と同様にストッパー付近で塑性変形した.また表-2 から D=15%(即ち No.7 供試体)では、他の供試体と比べて 1Cycle 早くき裂が進展している. これは D=15% ではストッパーとフィラープレートの隙間量が大きすぎるため、面内変形が発生したからであると考えられ る.これらのことから本実験に用いたパラメータでは、D=10%程度が妥当と言えよう.

おわりに 4.

3. 実験結果

破断箇所や破断までのサイクル数から FB-BRB の各種パラメータの大凡の最適値を確認することができた. 本実験で用いた供試体は、変形可能長Lが短かったため、ネッキング発生回数が少なくき裂進展・破断まで のサイクル数に大きな差異は見られなかった.しかしながら、本検討で得られた知見を踏まえストッパーを 複数個設置し、ネッキングを複数回発生させる FB-BRB と、中央部にストッパーを設けた一般的な BRB と の比較を行うことによって、FB-BRBのさらなる有用性を確認することができると考えられる.

参考文献

1) 丸山陸也, 賈 良玖, 篠原一輝, 葛 漢彬, 閻 楊: 魚骨型座屈拘束ブレース(FB-BRB)の開発に関する 基礎的研究, 土木学会中部支部平成 26 年度研究発表会, I-005, pp.9-10, 2015.3.