石川工業高等専門学校	山本	公男
石川工業高等専門学校	福田	陽介
石川工業高等専門学校	正会員〇高井	俊和

1. はじめに

これまで著者らは、高力ボルト継手構造に過大な 荷重が作用した時の終局挙動を明らかにするため、 耐荷性能、変形性能、それに関連したエネルギー吸 収能に着目して、母板厚が9mm、19mm、28mmの 継手の引張載荷実験^{1,2,3)}を行ってきた.

本研究では、落橋防止構造で使われている 22 mm の鋼板を母板とした継手の終局挙動を明らかにす ることを目的に引張載荷実験を行った.

2. 試験体

試験体の継手の母板厚は 22mm, 連結板厚が 12mm, いずれも板幅は 120mm, 鋼種は SM400A である. 高 カボルトは F10T M22-90 を使用し, ボルト孔径は 24.5mm である. 接合面は目標塗膜厚を 75μm とし 無機ジングリッチペイントを塗布している. ボルト 配置およびその他の寸法を図1に示す.

実験ケースは,表1に示すように,ボルト軸力の 有無,ボルト本数(1本,2本),縁端距離(e:40mm, 60mm)の組み合わせで合計8ケースとしている.各 ケースとも3体ずつ引張載荷実験を行った.着目す る縁端は母板側であり,連結板側の縁端は破断しな いよう70mmと大きくしている.

なお、ボルト軸力有は、標準ボルト軸力である 226kNを目標にトルクレンチで軸力を導入し、軸力 無は手締めとした.

3. 試験方法

試験体を写真1のように万能試験機に設置して継 手が破断するまで引張載荷を行った.載荷速度は1 秒間に1kN程度,荷重が増加するようにした.

図2のように母板と連結板のずれ(相対変位)を 計測するために基準線を引き,各荷重段階で母板と 連結板の相対変位を測定した.このほか,載荷荷重, 試験機のチャック間変位と,継手各部のひずみを記 録した.

また,載荷終了後に試験体の解体を行い,破断部 位を除き母板と連結板のボルト孔径を計測した.

石川工業高等専門学校	学生員	舟山	耕平
石川工業高等専門学校		村田	俊
石川工業高等専門学校	正会員	三ツ木	幸子

図1 試験体形状

表1 試験体数

7	ボルト軸力	ギルレオ粉	縁端距離 e			
		ホルト本剱	40mm	60mm		
	有	1	3	3		
		2	3	3		
	ÁTT.	1	3	3		
	黑	2	3	3		

4. 実験結果および考察

実験結果として表2に,終局荷重,破断モード, 破断位置,ボルト孔径及びエネルギー吸収量を示す. なお,軸力有は,すべり荷重とすべり極小値も併せ て示している.試験体番号は,先頭から軸力のあり (F)なし(B),縁端距離,ボルト本数と,3体ずつ の通し番号を示す.破断位置の番号を図3に示す.

縁端,ピッチ間,純断面破断は,いずれの試験体 とも母板で生じた.

ケースごとに3体の結果を平均したエネルギー吸 収量の比較を図4に示す.

表 2 実験結果一覧

—		上。四世王	よ。いたしは	始日世手			ギルーコタ() 四切エクルギー(N				L'AL)	
	試験体番号	うべり何里	うべり極小胆	於同何里	破断モード	破断位置		11/1/14	L1至(mm)		吸収エイル・	+−(N • m)
		(KIN)	(KN)	(KIN)			0	(2)	3	(4)		半均
	F-40-1-1	230	90	420	縁端	3	\backslash	32.6	32.9	\backslash	3,761	6,545
	F-40-1-2	252	80	419	縁端	3	\backslash	49.9	-		9,998	
	F-40-1-3	239	120	426	縁端	3		38.0	45.8		5,875	
	F-60-1-1	262	90	522	ボルト	2		33.7	32.9		5,565	
軸	F-60-1-2	260	89	523	ボルト	2	\backslash	33.0	32.7		5,074	5,550
	F-60-1-3	253	114	526	ボルト	2	\setminus	33.0	32.7	\setminus	6,010	
万	F-40-2-1	469	270	830	縁端,ボルト	3,④	34.4	32.2	-	50.2	8,883	
.H	F-40-2-2	485	220	829	縁端	3	34.0	31.0	36.6	31.1	8,352	8,704
	F-40-2-3	507	258	858	縁端,ボルト	2,①	43.8	-	31.9	35.0	8,877	
	F-60-2-1	496	205	964	純断面	4	43.0	31.1	31.8	-	16,847	
	F-60-2-2	485	148	965	純断面	4	41.5	30.9	31.1	-	13,586	13,697
	F-60-2-3	470	266	964	純断面	4	40.0	31.0	32.0	-	10,657	
	B-40-1-1	1-1		418	縁端	2		-	36.6	\setminus	4,665	
	B-40-1-2	\mathbf{i}		409	縁端	3		30.0	-		1,878	3,312
	B-40-1-3	\backslash		413	縁端	2		-	33.6		3,394	
	B-60-1-1			515	ボルト	2		33.6	33.6		5,090	
+1	B-60-1-2			513	ボルト	3		33.4	33.6		4,748	4,762
111	B-60-1-3		`	516	ボルト	3		32.6	32.9		4,447	
万無	B-40-2-1		\backslash	835	縁端、ピッチ間	1,2	-	-	31.0	34.2	7,721	
200	B-40-2-2		\backslash	833	縁端、ボルト	2,①	49.4	-	30.5	34.0	6,908	6,946
	B-40-2-3		\backslash	845	縁端、ボルト	2,①	42.3	-	32.5	32.3	6,210	
	B-60-2-1			949	純断面	4	40.3	30.2	31.7	-	11,792	
	B-60-2-2		\backslash	971	純断面	1	-	32.1	31.3	41.8	13,922	11,967
	B-60-2-3		\backslash	976	縁端、ボルト	2,①	49.4	-	30.5	34.0	10,186	
	※破断モードの表記について 緑端 : 緑端のせん断破断 ボルト : ボルト軸部のせん断破断											
純断面 : 純断面の引張破断 ビッチ間 : ピッチ間のせん断破断 をそれぞれ示す.												
	※ボルト孔径-(ハイフン)の表示は、縁端部の破断やピッチ間の破断により、孔の変形量が計測できなかったもの。											
			2 3		_	1	6 000					
						1	0,000					

図3 破断位置の分類番号

ボルト本数が2本の方が1本よりエネルギー吸収 量は大きく、ボルト1本の結果は2本の場合の40~ 55%程度とほぼ半分となった.

各ケースで縁端が 40mm と 60mm を比較すると 60mmの方が,エネルギー吸収量が高いが,1本ボル トの軸力有のみ逆転している.これは F-40-1-2のボ ルト孔変形量が 49.9mm と極端に大きいことに起因 してエネルギー吸収量が大きくなったためで,F-40-1-2 をのぞいた平均値を図中に◆印で示す.この結 果によれば,破断モードが異なる場合でもいずれの ケースとも縁端距離が長い方が,エネルギー吸収量 が大きくなっている.

また,軸力有のエネルギー吸収量は,軸力無より も15~45%程度高くなっている.これは,荷重-相 対変位関係で,すべり発生前後におけるボルト軸力 の寄与が関係していると推測され,軸力有はボルト 軸部とボルト孔のクリアランス (2.5mm)の分,相対 変位が大きいことも関係していると考えられる.

図4 エネルギー吸収量の比較

参考文献

- 高井俊和、山口隆司、三ツ木幸子、西川真未:高 カボルト継手の終局挙動における孔変形に着目 した 2,3の考察,構造工学論文集,Vol.60A,pp. 694-702,2014.3
- 2) 舟山耕平,三ツ木幸子,前田啓伸:板厚 19mmの 高力ボルト継手の終局挙動に関する実験的研究, 土木学会第70回年次学術講演会講演概要集,I-488, pp. 975-976, 2015.9
- 三ツ木幸子,舟山耕平,加古知也,寺本圭吾,前 田啓伸:板厚 28mm の高力ボルト継手の終局挙動 に関する実験的研究,土木学会第 70 回年次学術 講演会講演概要集,I-489, pp. 977-978, 2015.9