かぶりコンクリートの剥離形態が RC 床版橋の耐荷性状に与える影響

富山県立大学	○桶谷 弦輝(学生会員)	伊藤 始(正会員)
富山市	林健造	植野 芳彦

1. はじめに

日本では高度経済成長期以来より大量に建設され てきた構造物の高齢化が問題となっている。橋梁は その代表的な構造物であり、日本全体の総数は約70 万橋であり、その高齢化は加速度的に進行している。 このような高齢化した橋梁の崩壊による被害を未然 に防ぎ、長期に渡って使用するために、点検により橋 梁の状態が把握され、補修優先度が決定されている。

現在の点検は、橋梁数の多さや点検技術者の少な さ、管理者の財政状況の厳しさに起因して、外観上の グレードによる性能評価手法により行われている。 この手法では橋梁全体に対する変状の面積割合が重 視され、変状の位置やパターンに着目しないことで、 安全性が過大または過小に評価される課題がある。

本研究では、橋長 2m 以上 15m 未満の小規模鉄筋 コンクリート床版橋におけるかぶりコンクリートの 剥離を対象に、その位置と大きさが耐荷性状に与え る影響を把握することを目的とした。研究では、剥離 が生じた実際の床板橋をモデルに数値解析を行い、 耐荷力と荷重が低下した時の変位量を比較した。

2. 研究方法

(1) 対象橋梁の概要とグレード評価

富山市のN橋を対象橋梁として性能評価を行った。 N橋の側面と断面の概略図を図-1に、点検時に橋梁 下面に生じた変状を図-2に、形状寸法と配筋条件を 表-1に示す。変状は図-2のように主に橋梁の上流側 と下流側の端部における「剥離・鉄筋露出」であり、 区分E(鉄筋が露出しており、鉄筋が腐食している) と判定され、面積割合が20%との結果であった¹⁾。 なお、鉄筋径や配筋条件等は設計図がないため、点検 時の損傷写真から推定した。

(2) 解析ケースと解析方法

解析では 3 次元 FEM 解析を用い「剥離・鉄筋露 出」の橋軸方向の位置と大きさの影響を検討した。鉄 筋はコンクリートと完全付着として、バイリニア型 の応力-ひずみ関係を適用した。圧縮強度や引張強 度等は構造設計計算書等がないため道路橋示方書 2) に準じて設定した。剥離範囲は要素を取り除くこと でモデル化した。解析では支間長 5.6m として支点 を置き、橋軸方向中央部に線状に強制変位を作用さ せて、破壊に至らせた。その反力と直下の変位を出力 した。解析ケースは表-2のように剥離の①深さ、② 位置、③範囲を変えた計 13 ケースを実施した。①剥 離深さはA:健全、B:鉄筋深さ、C:鉄筋+100mm の深さとした。②位置は中央部と端部(支点から 500 mm)、③範囲は有効高さdの整数倍 1、2、4 とした。

図-2 N橋の床板下面状態

表-1 N橋の形状寸法や配筋条件

形状寸法			配筋条件		
支間長	断面幅	断面高	有効高さ	鉄筋径	鉄筋間隔
L	a	n	a	U	S
5, 600	5, 100	560	460	16	100

単位:mm

表-2 解析ケース

ケース名	損傷状態	①剥離深さ	②剥離位置
Α	健全状態	—	-
B −□d	剥離 • 鉄筋露出	鉄筋深さ	中央
BT−⊡d			端部
C −□d		鉄筋+100mm の深さ	中央
CT-□d			端部

□:③剥離範囲:有効高さの整数倍1、2、4

3. 解析結果

(1) 荷重-変位関係と破壊形態

剥離範囲が 4d である 4 ケースと健全状態 A の荷 重-変位関係を図-3 に示す。いずれのケースも初期 の剛性が大きく、荷重 600kN~800kN で曲げひび割 れが発生し、剛性が低下している。その後、荷重 1000 ~1500kN で鉄筋が降伏し、荷重の増加を伴わず中 央変位が増加した。最後には、多くのケースで圧縮側 コンクリートの圧縮ひずみが限界ひずみに達して荷 重が急激に低下した。

ケース A と CT-4d の破壊形態を図-4 に示す。図 は最大荷重時の橋軸方向ひずみと変形(10倍)を示 している。ケース A では典型的な曲げ破壊の状態が 確認できた。鉄筋が露出している CT-4d では、ひび 割れや圧壊が剥離位置の橋軸方向中央側で発生した。 それに対して、剥離範囲の小さい CT-1d や CT-2d で は剥離部にひび割れが生じず、橋軸方向中央にひび 割れが発生した。CT-4d において、剥離部の作用モ ーメントに対する抵抗モーメントの比が中央部の比 を下回ったことと理解できる。

(2) 剥離形態が最大荷重と終局変位に与える影響

剥離長さと最大荷重の関係および剥離長さと終局 変位の関係を図-5および図-6に示す。ここで剥離長 さ0mmの時はケースA(健全)を表す。また、終局 変位は荷重が最大荷重後に急激に低下し、鉄筋降伏 時の荷重を下回った変位とした。

図-5 の全シリーズにおいて、剥離長さが大きくなるにつれて、最大荷重が小さくなった。特に CT-4d で大きく低下した。剥離深さの影響について、剥離深 さが大きい C シリーズの最大荷重は B シリーズの値 に比べ小さくなった。

剥離位置の影響について、BT シリーズの最大荷重 の減少量は少なく、B シリーズと同程度の値であっ た。CT シリーズの最大荷重は 4d で全体の値に比べ 小さくなった。要因は前述のとおりである。中央部が 剥離した B シリーズでは 4d で終局変位が A よりも 大きくなった。これは断面高さが減少するとともに、 ひび割れ位置が限定されたためと考えられた。

まとめ

今回の検討では、断面減少のみを考慮したため、
剥離深さが鉄筋の位置までの場合、剥離位置や

長さに係わらず耐荷性状への影響が小さかった。

2) 剥離位置が支間中央から支点付近(端部)になる と最大荷重が低下する場合がある。特に剥離深 さが大きいと、その減少量が顕著になる。

参考文献

- 1) 富山県:富山県橋梁点検マニュアル(案), 2006
- 社団法人 日本道路協会:道路橋示方書(I共通編・Ⅱコン クリート橋編)・同解説, 2012

図-4 破壊形態(上段:A健全、下段:CT-4d)

図-5 剥離長さと最大荷重の関係

図-6 剥落長さと終局変位の関係