信州大学大学院	学生員	○徳田晴香
信州大学工学部	正会員	大上俊之
信州大学工学部	正会員	小山 茂

1. はじめに

日本列島は急峻な山岳地形と脆弱な地質といった 地理的特徴を有しており,降雨によって土砂災害発 生の危険性を有する斜面が広く分布している.この ことから,降雨を誘因とする土砂災害の危険性を評 価するためのモデルの開発が進められている.土砂 災害に関して,これまでにも実況の雨量に対する災 害発生危険度の表現方法に関する研究,集水度に関 する研究等,様々な研究が行われている.

長野県における土砂災害の危険個所数は全国でも 上位であり,過去多くの災害を被ってきている.2014 年7月に南木曽町で発生した土石流では,避難警報の 発令が遅れ,住民が避難する前に災害が発生した. 南木曽町の面積の9割が森林で,花崗岩帯,土壌が浅 いといった特徴がある.誘因である降雨だけでなく, 地形や土壌等の素因が関係している可能性が高い.

本研究では、長野県で過去に発生した土砂災害事 例より崩壊時刻の雨量を算出し、地形、土壌、土地 利用といった地域特性との関係性を分析し、避難が 必要となる降雨基準の設定について検討する.

2. 研究方法

本研究で対象とする土砂災害は,表層崩壊である 土石流,がけ崩れとし,地下水の影響が強い地すべ りは対象外とする.

避難が必要となる降雨基準として土砂災害発生危 険基準線(Critical Line: CL)を設定する.設定に際 して,崩壊地点の地形情報(表層地質,土壌,土地 利用,地形)を分析し,CLに反映させる.図1に本 研究のフローチャートを示す.

3. 研究に用いる情報

解析にあたっては、以下に示す降水情報、土砂災 害情報、地形情報、土壌情報、土地利用情報のデー タを ArcGIS に取り込み分析を行った.

(1) 降水情報

気象庁の気象業務支援センターが2006年から公開 している1kmメッシュの解析雨量データを用い, ArcGISに取り込んで降水情報とした.

(2) 土砂災害情報

長野県における2006年から2012年までの7年間の 土砂災害データを土砂災害情報として利用した.こ のデータは,土石流,がけ崩れ等の災害種別,場所, 規模,推定発生時刻を記載したものである.この7年 間に長野県で発生した土砂災害は,土石流が127箇所, がけ崩れが101箇所であった.この中で上記全てが記 録されていた土石流23箇所,がけ崩れ55箇所の災害 事例を対象に検討を行った.

(3) 地形情報

国土地理院の数値地図標高 5mメッシュの DEM データ¹⁾を基に, ArcGIS の解析ツールを用いて長野 県全域について傾斜度,起伏,曲率をそれぞれ算出 し,これらを地形情報とした.曲率に関しては,斜 面の断面曲率と平面曲率を算出し,表-1のような組 み合わせにより斜面形状を区分した.

表-1 曲率の分類

		平面曲率の値		
		Ē	0	負
縦断曲率の値	負	凸型尾根型	凸型直線	凸型谷型
	0	等斉尾根型	等斉直線	等斉谷型
	正	凹型尾根型	凹型直線	凹型谷型

(4) 土壤情報

国土交通省の20万分の1土壌分類基本調査GISデー タ2)を用いた.山地や低地等を分類する地形分類図, 固結堆や未固結等を分類する表層地質図,褐色森林 土や赤黄色土等を分類する土壌図の3種類のデータ が入っている.

(5) 土地利用情報

土地利用情報に関しては,平成18年の土地被覆を 衛星画像で解析した国土数値情報の土地利用細分メ ッシュデータ³を利用した.

4. CLの設定

崩壊地点における72時間半減期実効雨量と1時間 累積雨量から崩壊時刻のスネークラインを求めCL を設定する.

(1) 72 時間半減期実効雨量の算出

実効雨量は,先行雨量に低減係数αをかけること で求められる.以下に算出式を示す⁴⁾.

 $R_w = R_t + \sum_{i=1}^{x} \alpha_i \cdot R_i , \quad \alpha_i = 0.5^{\frac{1}{T}}$ (1)

ここに, R_wは実効雨量(mm), Rt は最新時刻 t の時間雨量, a_iはi時間前の低減係数, R_iはi時間前 の時間雨量, T は半減期である.本研究では,雨量 の半分が地中に存在する半減期Tを72時間として計 算を行った.

(2) スネーク曲線の算出

24時間無降雨期間後に降った雨を降り始め降雨と する.横軸に72時間半減期実効雨量,縦軸に1時間 累積雨量をとり,降り始めから崩壊までの降雨を時 系列で結ぶスネーク曲線を算出した.

土石流 23 箇所,がけ崩れ 55 箇所についてそれぞ れスネーク曲線を算出し,崩時時刻の雨量状況を図 -2,図-3 に示す。

図より, 土石流の崩壊時刻の実効雨量が 100mm 未満で崩壊した事例, 100mm~200mm 崩壊した事 例, 300mm 以上で崩壊した事例の 3 つのグループに 分類できることがわかる.実効雨量が少ないにもか かわらず崩壊したグループは,地形,土壌,土地利 用等の土地の状態が関係して崩壊した可能性が高い と考えられる.がけ崩れの場合も同様に 3 つのグル ープに分類された.

図-2 崩壊時刻の雨量状況(土石流)

図-3 崩壊時刻の雨量状況(がけ崩れ)

土石流とがけ崩れの3つの崩壊グループごとに, CLの設定を行う.CL設定の詳細については当日発 表する予定である.

参考文献

- 国土地理院基盤地図情報ダウンロードサービス:数値 地図 5m メッシュ(標高),2013.
 http://fgd.gsi.go.jp/download/
- 国土交通省国土政策局国土情報課の20万分の1土壌分 類基本調査GISデータ,2011. http://tochi.mlit.go.jp/kihon/tochi-bunrui
- 国土交通省国土計画局,土地細分メッシュデータ,2006. http://nlftp.mlit.go.jp/ksj/gml/cgi-bin/download.php
- 4) 川越清樹, 江坂悠里, 肱岡靖明: 実効雨量と地域情報
 を用いた東京都の土砂災害解析, 水工学論文集, 第55
 巻 pp.955-959, 2011.