FA サンドを用いたコンクリートのフレッシュ性状と圧縮強度の評価

金沢工業大学 学生会員 〇吉谷拓磨 金沢工業大学 正会員 宮里心一

1. はじめに

FA サンドとは、砕砂とフライアッシュ(以下 FA と略す)を事前混合し、通常の細骨材と同等の手順で運搬、貯蔵、計量、練混ぜが可能なコンクリート用細骨材である。これまで FA の利用には、専用の設備が必要であり、有効利用が進展しないという課題が存在した。しかし、近年、関西地方でのコンクリート用骨材の枯渇化に伴い、砕砂に舞鶴産 FA を混和した FA サンドの有効利用が検討されている 1)。

そこで本研究では、FAサンドの汎用化を図るため、 関西地方の舞鶴産FAと北陸地方の七尾産FAを用いた FAサンドを製造し、それを使用したコンクリートの基礎性状を評価した。

2. 実験手順

2.1 使用材料

普通ポルトランドセメント・高炉セメント B 種(各密度:3.13g/cm³・3.04 g/cm³)、砕砂・砕石(各密度:2.57g/cm³・2.53g/cm³)、および舞鶴産・七尾産 FA を使用した。ここで、FA の品質を表-1 に示す。また、AE 減水剤(主成分:リグニンスルホン酸塩とオキシカルボン酸塩) および AE 剤(主成分:樹脂酸塩系界面活性剤)を使用した。

2.2 FA サンド製造方法

図-1 に示すとおり、あらかじめ水を加えた状態の 砕砂および FA を、ミキサーを用いて 90 秒間に亘り 攪拌した。完成後、チャップマンフラスコを用いて、 表面水率を 2~4%の範囲に調整した。

2.3 実験ケース

表-2 および表-3 に実験ケースと配合表を示す。 No.2 および No.6 は、砕砂の全体量の 10% FA で置換した。また、砕砂を S、FA サンドを FAS と示す。

2.4 測定方法

スランプ、空気量、ブリーディング量、圧縮強度 を、JIS A 1101、JIS A 1118、JIS A 1123、JIS A 1108 に準拠して測定した。なお、圧縮強度の養生期間は 7日、28日、56日、91日とした。

表-1 FA の品質

項目	強熱減量 (%)	密度 (g/cm³)	U. + *	活性度指数(%)		
FA 産地			比表面積 (cm²/g)	材齢 28 日	材齢 91 日	
舞鶴	2.4	2.26	3615	86	102	
七尾	2.0	2.40	4742	91	105	

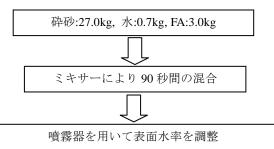


図-1 FA サンドの製造方法

表-2 実験ケース

No	セメント種類	FA 産地	置換方法				
1		-	FA なし				
2	N	舞鶴	FA 外割り				
3		罗 年 任	FA サンド				
4		七尾	ra y / r				
5		-	FA なし				
6	ВВ	舞鶴	FA 外割り				
7		罗 年 任	FA サンド				
8		七尾	ra y / r				
1							

表-3 配合表

我 5 能日教											
No W/C (%)		s/a	単位量(kg/m³)								
	(%)	W	С	FA	S	FAS	G	Ad	AE		
1	- 55	46 17	175	75 318		-	802			1.59	
2					79	714	-		1.91	0.06	
3						,	793	927	1.27	0.07	
4							799		0.96	0.01	
5					310	3	798			1.59	0.01
6					79	710		923	1.27	0.07	
7					-	-	789	923		0.08	
8							795		0.96	0.10	

表-4 0~90 分後のスランプと空気量

No		スランプ(cm	n)	空気量(%)			
	0 分後	45 分後	90 分後	0 分後	45 分後	90 分後	
1	6.6	6.0	2.0	4.8	4.0	3.9	
2	10.0	8.8	7.2	4.1	3.4	2.9	
3	8.8	7.8	2.3	4.5	3.2	2.6	
4	7.6	2.8	2.0	3.5	3.0	2.4	
5	9.6	5.6	2.1	5.7	4.2	3.6	
6	9.5	5.5	1.0	4.1	3.4	2.6	
7	10.0	6.3	4.0	3.9	10.0	2.9	
8	10.0	6.7	5.1	4.2	3.5	3.1	

3. 実験結果

3.1 スランプ・空気量

スランプおよび空気量を表-4に示す。0分後のス ランプは 8cm±2cm、および空気量は 4.5%±1.5%の目 標を満足した。

3.2 ブリーディング

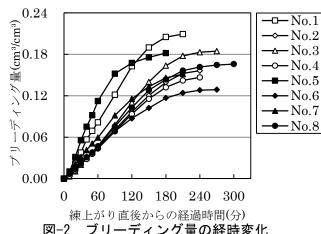
図-2 に練り上がり直後からのブリーディング量 を、また図-3 にブリーディング量の最大値を示す。 これらによれば、FAが混和された No.2、No.3、No.4、 No.6、No.7、No.8 においては、無混和の No.1、No.5 に比べ、ブリーディング量が抑制されることを確認 できる。これは、FA を砂置換で混合していることに より、微粉が多くなり、ブリーディング量が減少し たためと考えられる²⁾。

3.3 圧縮強度

図-4 に圧縮強度を示す。これによれば、FA が混 和された No.2、No.3、No.4、No.6、No.7、No.8 にお いては、無混和のNo.1、No.5に比べ、長期にわたっ て強度が発現することを確認できる。

図-5 に FA を外割りしたケースと FA サンドのケ ースの圧縮強度を比較する。これによれば、FA サン ドを用いたコンクリートと、FA を外割り置換したコ ンクリートで、同程度の強度発現が認められた。

4. まとめ


FA サンドを用いたコンクリートは、FA を外割り 置換したコンクリートと同等の、ブリーディング抑 制効果および強度発現を有する。

参考文献

- 1)坂本守,福留和人,小門勝彦,守口安保,大前延 夫:フライアッシュを事前混合した混合砂の実用 性に関する研究, コンクリート工学年次論文集, Vol.31, No.1, pp.997-998, 2009
- 2)花岡大伸,福原義之,羽渕貴士,参納千夏男:フ ライアッシュによるコンクリートのブリーディン グ抑制効果について、土木学会第65回年次学術 講演会講演概要集, pp.899-900, 2010

謝辞

福留和人教授(石川高専)、関電パワーテック(株) ならびに北陸電力(株)に御支援を頂きました。

ブリーディング量の経時変化

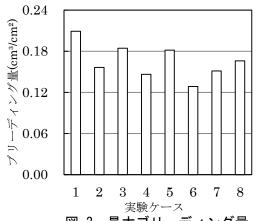


図-3 最大ブリーディング量

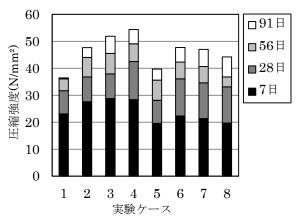


図-4 経過日数と圧縮強度の変化

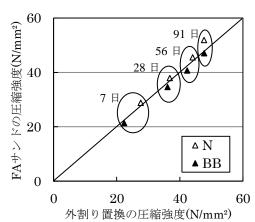


図-5 外割り置換と FA サンドの圧縮強度比較