名古屋工業大学 学生会員 ○岡 良亮 名古屋工業大学 非会員 小島 崇裕 K.Hamayoon 名古屋工業大学 正会員 張 鋒

1. 目的

杭基礎の損傷は構造物の性能を著しく低下させる だけでなく、復旧や調査にも多大なコストや労力を 要するため, 杭基礎構造物の効果的な耐震補強方法 の確立が望まれている. そのため本研究では既設杭 基礎構造物を対象とした耐震対策について、杭基礎 周辺の地盤をセメント等で部分的に改良し杭基礎を 拘束・補強する, 杭基礎周辺の部分的な地盤改良に 着目した.この工法では従来の補強工法に比べ,杭 本数の増大やフーチングの拡幅を必要としないため、 施工条件や経済性の面で有利であると考えられる. 本研究では乾燥および飽和地盤について、種々の地 盤改良仕様における杭基礎の耐震補強効果を実構造 物の 1/50 スケールを想定した重力場における振動 台実験を行うことにより検証した.過去の研究にお いても種々の地盤改良仕様について耐震補強効果の 検討は行われているが、実験の再現性について議論 がなされていなかったため、本稿では複数回の実験 を通して実験データの信頼性を確認する.

2. 実験概要

本実験は重力場で行うため相似則を完全に満たす ことはできないが、Buckingham の π 定理を用いた s=1/50 スケールの相似則を適用した杭基礎構造物(9 本群杭基礎),及び上部構造物のモデルを用いている

(図1).モデル杭にはアルミニウムパイプを用いて, 杭下端部をウレタンブッシュ構造とすることにより 杭を完全には拘束せず,回転支点(ヒンジ結合)に 近い構造となっている.

本研究では一般的な機械式撹拌工法,あるいは高 圧噴射といった一般的な地盤改良工法によるものを 想定し,豊浦標準砂と藤ノ森粘土の混合土に固化材 (高炉セメント B 種),および水を混ぜて作製した. その際,混合土の比率,及び固化材添加率を変えて 一軸圧縮強度試験を行い,結果にばらつきが少ない ものを選定し最適な配合条件を決定した.改良体の 一軸圧縮強度は 600kN/m²となった. 振動台実験は杭基礎周辺部をブロック状に改良した Case1 および, Case1 と同程度の改良土量でブロックを多段式に配置した Case2, これら 2 つのケースそれぞれについて乾燥および飽和の条件下で実験を実施した(図 2).本稿ではこれらの実験結果について過去に行われた同様の実験(無補強 Case0 も含めた)との比較を行い,実験の再現性を確認するものとする.計測機器は図 3 のように配置した.

3. 実験結果

乾燥条件における地盤は空中落下法(落下高 90cm) で作製し,飽和条件における地盤は水中落下法(落 下高 10cm)で作製した.相対密度はそれぞれ 80% および 24%程度となった.入力波形は図 4 に示すよ うな 4Hz の振動を 10 秒間与えた.その結果,全て のケースにおいてほぼ同様の波形となったが,加速 度の大きさは最大で 20.0%の変動があった.

3.1 乾燥条件

図5に過去の実験における最大曲げモーメント曲 げモーメント計測時の曲げモーメント分布を示す. 各ケースを比較すると、無補強(Case0)において杭頭 部で曲げモーメントが最大となっている一方で、改 良したケースでは杭頭部の曲げモーメントが抑えら れている.これは、改良体の拘束により杭の変形が 抑制されたためである. また, 改良したケースでは 改良体下端部付近で最大の曲げモーメントを生じて いる.これは改良体と周辺地盤の剛性差により局所 的に応力が集中したためだと考えられる.また, Case2 より,同程度の改良土量であっても改良範囲 を広げることで、その範囲において改良効果を与え ることが確認された.図6に今年度実施した実験に おける曲げモーメント分布を示す. 過去に行われた 実験と比較をすると、 杭頭部の曲げモーメントが抑 えられている一方で、改良体下端部付近で最大の曲 げモーメントを生じるという同様の傾向を確認する

ことができた.

3.2 飽和条件

飽和条件においては加振開始直後に各深度におい て過剰間隙水圧比が 1.0 となり地盤全体の液状化が 確認された.図7に過去の実験,図8に今年度実施 した実験における曲げモーメント分布を示す.両者 を比較すると,改良したケースにおいて,杭頭部の 曲げモーメントが抑えられている一方で,改良体下 端部付近で最大を生じるという曲げモーメント分布 となり,実験の再現性が確認された.

図8 今年度実施した実験における曲げモーメント分布(飽和)

4. まとめ

本実験は 1G 重力場で拘束圧の小さい地盤モデル で行われたため、実験結果の再現性が定性的には確 認されたが、定量的な再現結果を得ることが出来な かった。規模の小さい 1G 重力場のモデル実験の限 界があることは認めざるを得ない。

参考文献

1) F. Zhang, B. Ye, T. Noda, M. Nakano and K. Nakai: Explanation of cyclic mobility of soils: Approach by stress-induced anisotropy, Soils and Foundations, Vol.47, No.4 謝辞:

実験に手伝っていただいた長田辰弥・細谷旭弘両氏に感謝したい。