1. はじめに:中国の粘性土石流と呼ばれる土石流は 間欠的な多数のサージ状の土石流流下現象としてよ く知られている。この現象は粘性土石流特有なもの ではなく、日本では鹿児島県桜島の野尻川等での泥 流状の多数の土砂流サージ状として観測されている。 高濃度土砂流としての土石流ばかりでなく、濃度の 低い土砂流サージの間欠的な流れも報告されている。 欧州ではオーストリア西部の山間部や、イタリア北 部の山間部でも多数の間欠的なサージ状の土石流が 観測されている。本研究では、このような転波列性 土石流サージの波の分散性ついて、従来の流れとの 共存場における波の分散性の理論との関係を明らか にすることを目的としている。

2. 実験方法: 実験水路概念図を図-1 に示す。水路は 長さ 56m、幅 10cm、深さ 15cm、水路勾配 θ = 3.0deg、 の矩形断面水路で、透明硬質アクリル製である。下 流端水槽にポンプを設置し、固体粒子と水の混合を 水路上流端へ流送して水路内下流端に供給するもの で、循環式の水路である。流水ポンプをインバータ で制御し、流量をコントロールしている。実験は、 表-1 に示すように、流量は Q=503.7~1930.9cm³/s、 水深は h=0.73~1.52cm、粒子の容積濃度はCm= 0~0.12 である。水深は水路下流端から 3.0m 上流の 約 120 秒間の変動水深の単純平均である。平均流速 vは流量と平均水深hおよび水路幅 B=10cm の矩形 断面から求めた断面平均流速である。表中の Rem は w:清水、p:ポリプロピレン粒子含有、coal:石炭粉粒 子含有を示している。ポリプロピレン粒子は、長径 2.97mm、短径 2.14mm、長さ 2.97mm の円柱状の 形状で名目直径 d は d50=2.9mm、粒子密度 σ =1.06g/cm³、石炭粉粒子は、中央粒径 d₅₀=0.67mm、 粒子密度は σ =1.41g/cm³ である。流量及び濃度の測 定は、水路下流端において計量升による方法で計測 している。水深は、水路下流端から、3.0、3.8mの

大貴	〇寺川	学生会員	名城大学
宗之	新井	正会員	名城大学
雄規	石川	学生会員	名城大学
学	仙波	学生会員	名城大学

図-1 実験水路概念図

表-1 実験条件表

No.	Q	h	v	с	L	G	D
	(cm^3)	(cm)	(m)	(m/s)	(m)	C _m	Rem
A-1	1884.4	1.45	1.303	1.47	2.293	0.00	w
A-2	1634.7	1.11	1.466	1.87	3.135	0.00	w
A-3	1475.4	1.13	1.308	1.59	2.609	0.00	W
A-4	1453.8	1.15	1.266	1.83	3.125	0.00	w
A-5	1089.5	1.07	1.016	1.65	3.253	0.00	w
A-6	883.4	1.06	0.832	1.80	3.986	0.00	w
A-7	704.8	0.73	0.971	1.33	2.744	0.00	w
A-8	503.7	0.83	0.609	1.25	2.516	0.00	w
B-1	1688.2	1.45	1.164	1.82	3.102	0.09	р
B-2	1439.6	1.21	1.189	1.83	3.245	0.11	р
B-3	1428.5	1.22	1.169	1.74	3.396	0.11	р
B-4	1374.9	1.23	1.117	1.73	2.907	0.13	р
B-5	1280.0	0.97	1.326	2.21	3.672	0.11	р
B-6	1014.2	0.99	1.025	1.25	2.941	0.12	р
B-7	964.5	1.18	0.817	1.67	4.003	0.12	р
C-1	1930.9	1.52	1.270	2.01	4.342	0.11	coal
C-2	1724.8	1.46	1.183	1.81	3.076	0.10	coal
C-3	1211.4	1.73	0.700	2.02	4.468	0.12	coal
C-4	1122.3	1.64	0.685	1.79	3.618	0.11	coal
C-5	1082.5	1.25	0.863	1.79	3.946	0.10	coal

位置で水路側面より流れを動画撮影し、その水面の 位置と水路床の位置から時系列の変化として得てい る。また、この水深変動は、0.80mの間隔で計測し、 その位相差と計測間隔により波速cを得、波形の周期 と波速より波長Lを得ている。

3. 水面変動解析方法: 水面変動を撮影した動画は静 止画の画像ファイルに変換し、解析に供した。水面 変動の解析は Mathematica を用いて独自に開発し たプログラムにより解析を行った。過誤と思われる 部分については、目視による補正を行っている。清

図-2 固有角周波数

水の場合、解析を容易にするため着色剤を混ぜるな ど、実験を工夫して行っている。流下現象の記録画 像は毎秒 300 フレーム(300frames/sec)で約 120 秒間 記録し解析に供した。

4. 実験結果・考察: 波の波形 η を周期関数f(kx – σt) とすると流速 U の流れの中の分散関係は次のように 表されている¹⁾。

$$\sigma^2 = gk \cdot tanh(kh) \tag{1}$$

$$\sigma = \omega - \vec{k} \cdot \vec{U} \tag{2}$$

ここに、 σ :角周波数(固有角周波数)、 \vec{k} :波数ベクトル、 \vec{U} :流速ベクトル、h:水深、g:重力加速度、 ω :固定座 標点での角周波数、波速(位相速度)cはc = ω /kである から、 ω = kcを式(2)に代入し、 \vec{k} 、 \vec{U} をそれぞれ同一 方向とすると、

$$\sigma = k(c - U) \tag{3}$$

であり、 σ は速度 U の移動座標系における角周波数 を意味している。また、波長をLとすると、 $k = 2\pi/L$ であるから式(1)、(2)は次式の関係がある。

$$\sigma = \sqrt{\frac{2\pi g}{L} \tanh \frac{2\pi h}{L}}$$
(4)

$$\sigma = (2\pi/L)(c - U) \tag{5}$$

式(4)、(5)の関係を図-2 に示す。図-2 の横軸は、分 散関係の固有周波数を示し、縦軸は平均流速 v の移 動座標系での波速と波長からの角周波数を示したも のである。図中の実線は、式(4)、(5)が等しいとする 場合の関係である。実験結果の全体的な傾向は、式 (4)、(5)が線形の傾向にあることを示している。した がって、傾斜水路上に生成される固体粒子を含む波 の場合にも、式(1)の分散関係があることを示してい る。しかしながら、清水と固体粒子を含むそれぞれ

図-3 波速とh/Lとの関係

の分散関係は、必ずしも良い線形関数をしめしてい るとはいえないようである。また、平均流速 U の移 動座標系における波速を $c_1 = \sigma/k = (c - U)$ とし、 $c_0 = \sqrt{gh}$ とすると、式(1)の分散関係より

$$\frac{C_1}{C_0} = \sqrt{\frac{L}{2\pi h} \tanh \frac{2\pi h}{L}}$$
(6)

の関係がある。式(6)の関係を図-3に示す。図-3 は横 軸がh/L、縦軸が無次元波速 c_1/c_0 である。式(6)の関 係を実線で示し、実験結果を清水[•]、ポリプロピレ ン粒子含有[•]、石炭分粒子含有[•]で示している。 式(6)の関係によると $h/L = 0.001 \sim 0.05$ で無次元波速 はほぼ $c_1/c_0 \approx 1$ である。実験結果は、h/Lが 0.005 程 度の値に集中しているが、無次元波速 c_1/c_0 は 0.4 \sim 3.2 の大きなちらばりを有している。式(6)の関係に 近い値は清水の一部にみられるが、固体粒子を含有 した実験結果は異なった傾向を示している。 $c_1/c_0=1$ は、微小振幅長波理論の結果を意味しているもので あるが、それとは異なる現象であることを示してい るものと考えられる。

5. まとめ: 傾斜水路上の固体粒子を含む浅水流の転 波列の固有角周波数は、水平面での流れを伴う波の 分散関係と同じような傾向があるが、h/Lの小さな値 での波速は、水平面上での長波理論とは異なる現象 であることを示した。

謝辞: これらの実験は京都大学防災研究所宇治川オ ープンラボラトリーで行った。ここに記して関係各 位に謝意を表します。

参考文献: 1)土木学会編:水理公式集平成 11 年版、 pp.477-478、土木学会、2000.11。