| 名古屋工業大学 | 学生会員   | ○加藤智道  |
|---------|--------|--------|
| 名古屋工業大学 | 学生会員   | 小島直也   |
| 名古屋工業大学 | フェロー会員 | ( 冨永晃宏 |

表-2

case

## 1. はじめに

新しい河川整備では,治水・利水・環境の 多機能を同時に満足することが求められ ている. その中でも「わんど」は水辺の生 物の生息の場として人工的に設置するこ とがある.しかし近年「わんど」内の水質 悪化や堆積物過多による「わんど」の消失 などが問題になっている. そこで本研究で は、主流域からの「わんど」内への流入の 活性化を図るために「わんど」側の上流の

角に水制工を設置することを試み「わんど」内の水 理特性の変化について PIV 計測により検討した.

# 2. 実験方法

実験水路は、長さ7.5m、全幅0.3mの勾配可変開水 路を用いた. 側面はガラス張りで、レーザー光の反 射を防ぐために、全水路底に黒く塗った塩化ビニル 板を敷いている. 左岸側を奥行き 10cm, 高さ 6.3cm の塩ビ板を設置することで高水敷をつくり、上流端 の整流域から 3m の位置に解放区を設け,開口部長さ 20cm, 奥行き10cmアスペクト比2.0の凹部域とした. 水制モデルは, 高さ d=4.5cm, 幅 b=1.0cm は同じで 長さ1=5.0, 3.0, 2.0cmの3種類のアクリル直方体を 用いた.流量はインバータモーターにより調節し, 水深を非越流時が 3.5cm,越流時は 6.0cm となるよう に流量を調節した.なお、実験条件を表-1、実験ケ ースを表-2(非越流時のみ), 凹部と水制の位置関係を 図-1 に示す. PIV 計測の流れの可視化には, 直径 80 ミクロン、比重 1.02 のナイロン樹脂粒子を用い、 厚さ約 3mm のシート状にしたアルゴンレーザー光 を開水路水平断面に照射した. レーザーシートの照 射位置は、水平断面は非越流時には 5mm 間隔で 6 断 面(z=5~30mm), 越流時には5mm間隔で11断面(z=5 ~55mm)を設定した.この可視化画像は高速度カメ ラ (ライブラリー)を用いて 1/200s で撮影した. 画 像計測には FlowExpert (カトウ光研株式会社) PIV システムを用いて相互相関法により流速計測を行い, 3200 データ 16 秒間平均値を流速ベクトルデータと した.

| 2 入戸 大阪木口 |        |       |       |          |      |        |  |
|-----------|--------|-------|-------|----------|------|--------|--|
|           | Q(1/s) | h(cm) | B(cm) | Um(cm/s) | Fr   | Ι      |  |
| 非越流時      | 0.87   | 3.50  | 20.0  | 12.4     | 0.21 | 1/2000 |  |
| 越流時       | 2.17   | 6.00  | 20.0  | 18.1     | 0.24 | 1/2000 |  |

1 中時々ル



実験結果と考察

| 1  | 水制なし | 水制なし |
|----|------|------|
| 2  |      | 0    |
| 3  | 5    | 10   |
| 4  |      | 20   |
| 5  |      | 0    |
| 6  | 3    | 10   |
| 7  |      | 20   |
| 8  |      | 0    |
| 9  | 2    | 10   |
| 10 |      | 20   |

実験ケース(非越流時)

水制長さ 水制間隔

a ( ama)

図-2 に水深 h=3.5cm の非越流時,水平断面 z=2.0cm の caseA4, A6 および A8 の 16s 間平均流速ベクトル を示す.ベクトルの色は流速の大きさを表している. 水制により水はねと背後のはく離領域が見られ、主 水路流速が加速されているのがわかる.水制先端か ら剥離した水流は、一定の距離を経て水路の左岸側 に再付着する.この再付着点は水制の位置,長さに より違いが見られる. 全 case を比較して考えると再 付着点は水制長さの約10倍の位置にあることが分か った. また, 凹部内にできた渦に注目すると, 水制 がない caseA1 では、凹部の下流端から流入し反時計 回りの再循環渦が形成される.しかし、caseA4 では 凹部入口境界で逆流が見られ, 凹部内に時計回りの 渦が発生している. caseA2~caseA5 ではこの流れパタ ーンを示した. それ以外のケースでは case1 同様反時 計回りの渦ができていた. これは再付着点が凹部の 下流端より上流側であるのか下流側であるのかで変 化していると考えられる. caseA4 では再付着点が水 制から約50cmのところで左岸にぶつかり,凹部の下 流側で左岸に沿って逆流が発生し、この流れが凹部 に達している. caseA6 と caseA8 では再付着点が凹部 のちょうど下流端にあり凹部内への流入が活発化し, 凹部内の循環流が拡大している. caseA6 と caseA8 の 違いとして循環流の大きさが凹部の奥行と水制の長 さの和を直径とするような循環流ができているため 渦の中心が caseA6 の方が主流側に位置している.

図-3に各ケースの凹部内の平均合成流速を示す.こ のグラフで水制長さごと(a=5, 3, 2)に注目するとそ れぞれ caseA4, caseA6, caseA8 で最大になっている. これはどれも水制による再付着点が凹部の下流端の より近くであるからと考える.またすべてを比較し



図-2 流速ベクトル

たとき水制による再付着点の位置によって合成流速 が異なることが分かった.再付着点が凹部上流端 (x=0cm)にある caseA10 では水制の水はねの影響がな くなり水制なしの caseA1 と同程度になっている.再 付着点が凹部下流端より下流 (x>20) にある caseA2~A5 では先述のように凹部入り口付近で逆流 となり渦構造が異なっている.再付着点が凹部下流 端(x=20cm)にある caseA6, A8 が最も大きくなってい るが,凹部中央付近(x=10cm)にある caseA7, A9 にお いても case1 より大きな値を示している.

次に、それぞれの水制長さに着目して凹部中央部 (x=10.5cm)における主流方向流速 U の横断分布を図 -4 に、そして凹部境界における横断方向流速 V の縦 断分布を図-5 に示す. 図-4 の主流域(y≥10)について 考える.水制を設置していない caseA1 と比べてすべ てのケースの20≦y≦30で流速が大きくなっている. これは水制により主流域が縮流状態となり加速して いると考えられる. また, 凹部付近を見ると caseA4 は流速が負の値を示している. これは水制後半の剥 離流れにより逆流域が表れたものである. caseA1 で は y=10cm で流速が急に増大する変曲点があること に比べ caseA6,A8 は y=12cm 付近になる. これは上の 図からもわかるように水制背後に剥離領域が形成さ れるからと考えられる. 図-5 について水制がない場 合は顕著な変化は見られないが水制を設置した場合 水制による水はねの影響により流出入量がどのケー スも増加している. caseA4 は他の2ケースよりも流



出入量が少なくなっている.これは caseA4 では凹部 入り口付近に逆回転の渦が形成されていることから 分布形が他のケースと異なっていることによる.

# <u>4. おわりに</u>

本研究で、水制の長さや位置によって、流れ構造が 大きく変化し水制の再付着点距離と凹部下流端の位 置関係が重要であることが分かった.今回は非越流 についてのみを考えたので今後は越流時における水 交換の効率化、また凹部内での堆積の抑制について 検討していきたい.

### 参考文献

1) 冨永・小島・市川,開水路側岸凹部の流れ構造に 及ぼす対岸水制の影響,土木学会論文集 A2 (応用力 学), Vol.69, No.2, pp.I\_519-I\_528, 2013.

2) 冨永・谷川・久田,人工わんどの水交換機構とその制御に関する研究,水工学論文集,第46巻,571-576,2002.

