捨石マウンドの透水性の違いに着目した混成堤周辺の洗掘現象

名古屋工業大学 学生会員 〇後藤 麻衣 名古屋工業大学大学院 学生会員 今瀬 達也,伊藤 嘉 名古屋工業大学 正会員 前田 健一

1. はじめに

津波による洗掘現象については、地盤表層において、 流体力によるせん断力と土粒子の有効重量とのつり合い 条件に着目した掃流力や、浸透現象やダイレイタンシー による地盤内部の応力変化に着目したメカニズム解明が 進められている¹⁾.

本研究では,捨石マウンドの透水性が混成堤下地盤の 変状に与える影響について,流速および地盤内応力変化 に着目し,水路実験を行った.

2. 実験装置概要

図-1(a),(b),(c)に実験装置の概要及び実験時の洗掘の様 子を示す.実験では長さ2.0m×幅0.3m×高さ0.3mのアク リル水槽を用いた.水路上流より1.0mを起点に長さ 0.5m×幅0.3m×高さ0.1mの土槽区間を設置し、地盤を堆 積させた.それ以外の区間は不透水の海底床区間とし、 海底床の摩擦を考慮して表面には平均粒径 D₅₀=0.17mm の豊浦砂を付着させた.土層上部には捨石マウンド及び ケーソン模型を設置し、水路側面に固定した.水路最下 流部には止水壁を設け、実験初期の水位を調節した.流 体の循環には水中ポンプを使用し、0.1 kℓ/minの流量を 継続的に作用させた.実験時には小型間隙水圧計により 地盤内の間隙水圧の計測を行った.

3. 実験の結果

3.1 実験ケース

表-1 に実験に用いた試料の代表粒径 D₅₀ と D₁₀,透水 係数 k,表-2 に実験ケースを示す.実験では,基礎地盤 に豊浦砂を用い,相対密度が Dr=40%なるように作成し た.捨石マウンドには2 種類の礫材 A,B を使用し,捨石 マウンドの透水性の違いによる洗掘現象の違いに着目し た.また,地盤表面からの実験初期の水位を 20mm と 80mm に設定し、ケーソン模型の背後水位の違いによる 洗掘現象の違いについて検討した.

3.2 洗掘の様子

case1における洗掘幅上流*X*_u,下流*X*_d,最大洗掘深*Ds_{max}*の位置の時刻変化を図-2に示す.また,ケーソン模型の 上流側と下流側との水位差の時刻変化を図-3に示す.

図-1 実験装置の概要及び実際の洗掘の様子

(a) 実験装置概略図,(b)間隙水圧計設置位置,(c)洗掘の様子

表-1 地盤材料の代表粒径 D50, D10 および透水係数

地盤材料	豊浦砂	礫材A	礫材 B	
D ₁₀ (mm)	0.116	5.335	2.319	
<i>D</i> ₅₀ (mm)	0.173	8.57	4.73	
透水係数 k (cm/s)	2.21×10 ⁻²	7.64×10 ⁻⁰	6.04×10 ⁻⁰	

実験ケース	地盤材料	捨石マウンド材料	初期水位
case1	豊浦砂	礫材 A	20 mm
case2	豊浦砂	礫材 B	20 mm
case3	礫材 B	礫材 B	20 mm
case4	豊浦砂	礫材A	80 mm
case5	豊浦砂	礫材 B	80 mm
case6	礫材 B	礫材 B	80 mm

本稿では、この水位差を $\Delta\eta$ と定義した.水位差 $\Delta\eta$ は実験ケースによらず、実験開始から 30 秒前後まで上昇し、 その後緩やかに減少した.水位差 $\Delta\eta$ の変動によって発生した、ケーソン模型直下を回り込む流れにより、捨石マウンドと基礎地盤の境界面に洗掘が発生した.この洗掘は、ケーソン模型前面の隅角部を起点とし、水位差 $\Delta\eta$ の変動に伴って上流から下流へと拡大した.最大洗掘深 *Dsmax*の位置は、常に、洗掘の起点であるケーソン模型前面の隅角部であった.

3.3 洗掘深*Ds*maxと洗掘幅*X*d-Xuの関係

図-4 に洗掘幅 $X_u \cdot X_d$ と洗掘深 Ds_{max} の関係を,図-5 に 洗掘深 Ds_{max} と水位差 $\Delta \eta$ の関係を示す.図-4 では,実 験条件によらず,洗掘幅 $X_u \cdot X_d$ と洗掘深 Ds_{max} には直線関 係がみられた.また,図-5 では,深さ方向の洗掘は水位 差 $\Delta \eta$ =20mm の時点から始まったことがわかる.このと き,洗掘深 Ds_{max} と水位差 $\Delta \eta$ においても直線関係がみら れた.このことから洗掘幅と洗掘深は水位差 $\Delta \eta$ によっ て一義的に決まるものといえる.次に,洗掘量と水位差 $\Delta \eta$ の関係を図-6 に示す.洗掘量は,洗掘断面から奥行 が同じであると仮定して算出した.case1 と4, case2 と5 が同じ曲線を描くことから,初期水位の影響はほぼない といえる.しかし,捨石マウンドの粒径の違いによって, 洗掘量に違いがみられた.この要因として,粒径の違い による捨石マウンド内の流速の違いが挙げられる.この

図-5 洗掘量と水位差Δηの関係

ように、捨石マウンドの粒径の違いによって洗掘の進行 度合いが変化することがわかった.

4. 結論

以上の結果から,捨石マウンドの透水性の違いにより, 洗掘の進行度合いが変化することがわかった.このよう に洗掘の進行度合いに影響を与える要因について分析す る必要がある.実験時に間隙水圧の計測を行ったが,基 礎地盤内部に過剰間隙水圧の発生が確認された.今後さ らに地盤内圧力分布の影響について検討する必要がある.

<u>謝辞</u>

本研究は、日本学術振興会科学研究費補助金黄基盤研究 (B)21360222 と基盤研究(B)21360222 の助成を受けたもの である.ここに記して謝意を表する.

参考文献

1)今瀬達也・前田健一・伊藤嘉・三宅達夫・鶴ケ崎和博・澤田豊・ 角田紘子(2012):間隙圧の変化に着目した開水路流れ及び越流によ る洗掘メカニズムの実験的考察,土木学会論文集 B2, vol.68,No.2,2012,I_836-I_840.