玄武岩繊維ロッドの緊張接着による RC 梁のひび割れ抑制効果

名城大学 学生会員 〇佐藤 大地 正会員 岩下 健太郎 (株) 富士ピー・エス 正会員 八木 洋介 内野 英宏 吉田 光秀

1. はじめに

現在,鉄筋コンクリート(RC)の鉄筋の腐食 問題は深刻であり,鋼板や RCによる増し厚や 連続繊維複合材(Fiber reinforced polymers, FRP) の表面接着による鉄筋量の増強や腐食抵抗性の 改善が図られる補修・補強方法が主流な技術と して広く用いられている.また,FRPに緊張力 を導入し,コンクリートの表面に接着すること で,ひび割れ抑制効果に期待する補強技術の開 発も進められている.本研究では,比較的低価 格で2.5%を超える伸度と,1kN/mm²の引張強度 を有する玄武岩(Basalt)繊維を用いたFRP(以 降 BFRP と呼称)のロッドをコンクリート表面 に緊張状態で接着する補強技術によるひび割れ 抑制効果を,RC梁の4点曲げ試験におけるひ び割れ幅や間隔,本数を評価し,検討する.

2. 実験方法

本研究では,計3体の無補強RC梁を作成し, 底面にBFRP ロッドを緊張接着し,4 点曲げ試 験を実施して,BFRP ロッド緊張接着によるRC 梁のひび割れ抑制効果を検討した.RC 梁は図 -1に示すように150mm×200mmの矩形断面で引 張鉄筋比は1.7%,コンクリートの材齢28日に おける圧縮強度は40.4N/mm²である.全長は 2.0m で支点間隔は 1.8m, 4 点曲げ試験における 載荷点間隔は 600mm とした.

BFRP ロッドの緊張には反力を受け持つ鋼製 フレームの両端に緊張力を導入するための油圧 ジャッキおよび荷重測定のためのロードセルを 接続した緊張装置(図-2)を用いた.BFRP ロ ッドの両端は膨張セメントを充填した鋼管に定 着したうえで,緊張装置に固定し,BFRP ロッ ドの引張強度の25%に相当する緊張力を与えた BFRP ロッドの上に RC 梁を配置する.そして, 接着箇所の周囲に離形性のある型枠を設置し, 内部に粘性3000MPa・s程度の高流動性エポキシ 樹脂を充填することにより BFRP ロッドをコン クリート表面に接着した.接着箇所周辺の状況 を図-3に示す.

梁の片側側面の引張鉄筋高さに検長 100mm のπ型変位計を5個貼付し,鉄筋の中央付近に 検長5mmのひずみゲージを3個貼付して,そ れぞれひび割れ幅と鉄筋ひずみの測定を行った.

3. 実験結果と考察

3.1 ひび割れ抑制効果の実験的検討

無補強供試体では、荷重が6~8kNでコンクリ ート引張縁にひび割れが生じ、その後、梁の長 手方向に90mm程度の間隔で分布ひび割れが生

じていき、8本程度のひび割れが生じた後、引張 鉄筋の降伏が生じた.その後、梁の圧縮縁でコ ンクリート圧縮破壊が生じたため、実験を終了 した。無緊張BFRP補強供試体および緊張BFRP 補強供試体では、分布ひび割れ発生後に引張鉄 筋降伏が生じ、載荷を継続するとコンクリート 表層で剥離が進展して荷重が急激に低下し、そ の直後に梁の圧縮縁でのコンクリート圧縮破壊 が生じたため、実験を終了した.終局時に発生 したひび割れ分布状況を図-4に、平均ひび割れ 間隔を表-2に示す.緊張BFRP補強供試体で平均 ひび割れ間隔の減少傾向が確認できるが、これ は緊張応力導入により引張応力が分散し、ひび 割れ本数が増加したためと考えられる.

3.2 簡易算定式によるひび割れ幅の評価

4点曲げ試験の結果から,荷重とひび割れ幅の 関係を図-5に示す.鋼材の腐食に対する許容ひ び割れ幅は,コンクリート標準示方書[設計編] ¹⁾において一般の環境下で異型鉄筋を用いてい る場合に0.005c(cはかぶり深さ)とされており, 本試験では0.2mmである.許容ひび割れ幅への 到達時の荷重を無補強供試体と比較すると,無 緊張BFRP補強供試体で43%,緊張BFRP補強供 試体で94%向上し,緊張力導入による飛躍的な ひび割れ抑制効果が得られていることが実験的 に示された.また,同示方書のひび割れ幅の算 定式(1)により,ひび割れ幅を評価する.

 $W = k \{4c + 0.7(c_p - \phi)\}(\varepsilon_p + \varepsilon'_{cs})$ (1) 一方, FRP シートで補強された RC 梁のひび割 れ幅は無補強の場合より抑制,低減されるが,

「連続繊維シートを用いたコンクリート構造物の補修補強指針」²⁾では、その低減係数を 0.7 としている.そこで、本研究では、式(1)から 算出されたひび割れ幅に 0.7 を乗ずることで、 無緊張 BFRP 補強供試体、緊張 BFRP 補強供試 体のひび割れ幅を算定した(図-5).実験値と 算定値には相関が見られることから既往の算定 式で評価できることが明確となった.

4. おわりに

BFRPロッド緊張補強技術によるひび割れ抑 制効果が実験的に示された.また,BFRPロッド

c: 引張鉄筋のかぶり

c_n:引張鉄筋の中心間隔

φ:引張鉄筋の直径

 ε_p : ひび割れ断面における鉄筋ひずみの増加量 ε'_{cs} : コンクリートの収縮およびクリープなどによる ひび割れ幅の増加を考慮するためのひずみ量(本研 究では実験時間にほとんど差がないことから、0 と した.)

図-5 荷重とひび割れ幅の関係

緊張接着補強技術を用いたRC梁の4点曲げ試験 で生じるひび割れ幅は既往の算定式で評価でき ることが明確となった.

参考文献

1) 土木学会編, コンクリート標準示方書 [設計編], 2011

 2) 土木学会編, 連続繊維シートを用いたコンク リート構造物の補修補強指針, コンクリートラ イブラリー101, 2000