名城大学理工学部	正会員	新井宗之
岐阜大学工学部	正会員	安田孝志
名城大学理工学部	学生員	石川雄規
名城大学理工学部	学生員	久野浩太

1. まえがき:

中国・雲南省の蒋家溝で観測される粘性土石流に代表さ れるように、多数の土石流サージとして流下する現象があ る.日本では、鹿児島県・桜島の野尻川等で泥流状の転波列 性土石流が観測されている.また、ヨーロッパでもオース トリアの Bodenkultur Wien 大学 Alpine Naturgefahren 研究 所などでも、同国内の西部山岳地域での観測施設で間欠的 な多数の土石流サージ流下を観測している.これらの転波 列性サージは、粘性土石流のような微細粒子を高濃度に含 む土石流の固有な現象ではなく、流れの不安定性に基づく 現象でどのようなタイプの土石流でも発生する可能性があ る.しかし、その流下特性については十分明らかではない ¹⁾.そこで、本研究では転波列性サージの波動性について明 らかにすることを目的とし、ここではサージ先端部の位相 速度について検討するものである.

2. 転波列性サージの波速

急変する水面変動を考慮した一次元流れの運動方程式,お よび連続式は次式のように表わされる.

$$\frac{\partial v}{\partial t} + \beta v \frac{\partial v}{\partial x} + (1 - \beta) \frac{v}{A} \frac{\partial A}{\partial t} = g \sin \theta - g \cos \theta \frac{\partial h}{\partial x} - \frac{f'}{2} \frac{v^2}{R}$$
(1)
$$\frac{\partial A}{\partial t} + \frac{\partial (A v)}{\partial x} = 0$$
(2)

ここに, *v* : 断面平均流速, *A* : 流積, *g* : 重力加速度, *θ* : 水路勾配, *R* : 径深, *h* : 水深, *β* : 運動量補正係数, *f*' : 摩擦損失係数.

運動方程式の左辺第1項は加速度項,第2項は移流項, 第3項は流積の変動による応力項,右辺第1項は水路勾 配により生じる質量力の成分,右辺第2項は水面勾配に よる圧力差としての作用力,第3項は底面摩擦応力によ る抵抗項である. 波速 c により,流速 v および水深 h を $v(x,t) = U(x - ct) = U(\xi), h(x,t) = H(x - ct) = H(\xi),$ $\xi = x - ct$ により移動座標系で表わすと,運動方程式,連続 式は次式のようになる.

$$c\frac{\partial U}{\partial \xi} - \beta U \frac{\partial U}{\partial \xi} + c \left(1 - \beta\right) \frac{U}{A} \frac{\partial A}{\partial H} \frac{\partial H}{\partial \xi}$$
$$= -g \sin \theta + g \cos \theta \frac{\partial H}{\partial \xi} + \frac{f'}{2} \frac{U^2}{R} \qquad (3)$$

$$\left(U-c\right)\frac{\partial A}{\partial H}\frac{\partial H}{\partial \xi} + A\frac{\partial U}{\partial \xi} = 0 \tag{4}$$

式 (3), (4) および進行流量 (*c* – *U*)*A* = *K*_A = const. の関係を 用いると水面形の式として次式を得る.

$$\frac{\partial H}{\partial \xi} = -\frac{A\left\{g\sin\theta - \frac{f'}{2}\frac{1}{R}\frac{\left(cA - K_A\right)^2}{A^2}\right\}}{\left\{\beta\left(\frac{K_A}{A}\right)^2 + \left(1 - \beta\right)c^2\right\}\frac{\partial A}{\partial H} - gA\cos\theta}$$
(5)
$$= -\frac{f_1(H)}{f_2(H)}$$
(6)

支配断面においては、 $f_1(H) = 0$ 、 $f_2(H) = 0$ の関係がある. $f_2(H) = 0$ の関係より、支配断面での流速を U_0 とすると波速 cとの関係として次式が導かれる.

$$\frac{U_0}{c} = \frac{\beta \frac{\partial A}{\partial H} - \sqrt{\beta \left(\beta - 1\right) \left(\frac{\partial A}{\partial H}\right)^2 + \frac{S}{F_r^2} \left(\frac{\partial A}{\partial H}\right)}}{\beta \frac{\partial A}{\partial H} - \frac{S}{F_r^2}}$$
(7)

ここに, $F_r = \frac{U}{\sqrt{gH\cos\theta}}$: フルード数, S: 潤辺.

水路断面形状を矩形断面とすると、<u>*U*</u> は次式のようになる.

$$\frac{U_0}{c} = \frac{\beta - \sqrt{\beta(\beta - 1) + \frac{S}{B}\frac{1}{F_r^2}}}{\beta - \frac{S}{B}\frac{1}{F_r^2}}$$
(8)

ここに, B:水路幅.

一方,自由水面の波動については多くのことが明らかに されている. ポテンシャル Φ を

$$\Phi = A \cosh k(y+h) \cos(kx+\omega t) \tag{9}$$

ここに, 2A' exp(*kh*), *k*: 波数, ω: 位相, *h*: 平均水位, *y*: *h* の変動分.

として,次式の線形分散関係式が得られている.

$$\omega^2 = \left(gk + \frac{T}{\rho}k^3\right) \tanh(kh) \tag{10}$$

ここに, T:表面張力, ρ:流体密度. これより,重力波(T=0)の場合,次式の関係が得られる.

位相速度 :
$$C_p = \frac{\omega}{k} = \left(\frac{g}{k} \tanh(kh)\right)^{\frac{1}{2}}$$
 (11)

群速度 :
$$C_g = \frac{dw}{dk} = \frac{1}{2}C_p\left(1 + \frac{2kh}{\sinh(2kh)}\right)$$
 (12)

表1実験条件

No.	θ	Q	h	v	d_{50}	σ	С
	(deg.)	(cm ³ /s)	(cm)	cm/s	cm	g/cm ³	
1	3.0	1576	1.07	147.3	-	-	0
2	3.0	1310	0.97	135.1	-	-	0
3	3.0	1122	0.89	130.6	-	-	0
4	3.0	1800	1.15	156.6	-	-	0
5	3.0	2035	1.24	164.2	-	-	0
6	3.0	852	0.78	109.3	-	-	0
7	2.5	2148	1.6	134.4	0.067	1.41	0.177
8	3.0	1931	1.6	121.0	0.067	1.41	0.071
9	3.0	2520	2.0	128.0	0.067	1.41	0.202
10	3.0	1745	1.3	134.1	0.29	1.06	0.165
11	3.0	1150	1.3	88.0	0.29	1.06	0.158

3. 実験の概要及び考察

実験水路は、長さ28m、幅 10.0cm、深さ 10.0cm の両側 壁透明塩化ビニール製、水路床はアルミ製の可変勾配水路 である.清水流れの場合は水路長 56m で実験を行った.流 れは水路下流端に設置されているポンプで水路上流端ま でビニールパイプで流送され, 整水槽を通して水路に供 給される循環式水路である. ポンプはボルテックス型のも ので 5mm 程度の粒子を流送可能である.実験条件を表1 に示す. No.1~N0.6 は清水で, No.7~No.11 は固体粒子を 含有した流れである.実験に使用した粒子は、石炭粒粒子 (No.7~9) およびポリプロピレン粒子 (No.10~11) で,石炭粉 粒子は中央粒径 d_{50} =0.67mm, 粒子密度 σ =1.41g/cm³, 粒子 の最充填濃度 C_{*}=0.57 である.また、ポリプロピレン粒子 は,長径 2.97mm,短径 2.14mm,長さ 2.97mmの円柱状の 形状で、名目直径 d は d_{50} =2.9mm、粒子密度 σ =1.06g/cm³、 粒子の最充填濃度 C_{*}=0.54 である.図2,図3の中のO印 は清水の流れ,●印は固体粒子を含む流れを示している.

転波列性サージの流下において、時空間的平均流量と平均 水深から得られる断面平均流速を支配断面の流速 U_0 とし、 サージ先端部の流下速度の時空間的平均を移動座標系の速 度 c とすると、式 (8) と実験結果の $\frac{U_0}{c}$ の関係を図 2 に示す. 横軸は式 (8) による $\left(\frac{U_0}{c}\right)_t$,縦軸は実験結果の $\left(\frac{U_0}{c}\right)_e$ である. ただし、運動量補正係数 β は、清水および固体粒子を含む 場合のいずれも β = 1.02 を用いている. この図の結果は、 β = 1.02 程度で比較的よく一致することを意味しているも のである. 一方、線形分散関係式の重力波 (T = 0) の位相速 度 C_p と、流れの断面平均速度 v の移動座標系におけるサー ジ先端部の位相速度 (c - v) の関係を図 3 に示す. 横軸が式 (11) による C_p であり、縦軸が実験結果の c - v である. 式 (11) による位相速度 C_p と実験結果の (c - v) は比較的良い 一致を示しているが、実験結果の方が少し大きな値の傾向を

示している.また,群速度 C_g との関係は図に示していないが,位相速度 C_p とほぼ同じ結果である.さらに, $kh \ll 1$ であることより,浅水波の位相速度,群速度の \sqrt{gh} とも非常に近い値である.これらより,流れの不安定性による転波列の生成によるサージ状の流れは弱い分散性の重力波としての波動を示すものである.

参考文献:1)新井宗之,水山高久:転波列性泥流のサージ 波長に関する基礎的検討,土木学会論文集,A2(応用力学), Vol.67, No.2, pp.345-354, 2011.9.