名古屋大学 学生会員 〇西島 悠太 名古屋大学大学院 正会員 北根 安雄 名古屋大学大学院 フェロー会員 伊藤 義人

1. 研究目的

今日、高度経済成長期から40年程経過し、当時建 設された無防食・腐食代設計の港湾鋼構造物は腐食 劣化しているものも多い。すでに補修・補強された 構造物が多く存在するが,維持管理においてそれら の港湾鋼構造物の健全度評価には目視点検の他、板 厚計測が必要となる。現在の板厚測定法は超音波測 定(UT)により行われる。この方法は、測定箇所の腐 食状況を把握できると思われる代表点を選定し、

100mm 四方を1箇所として付着物を除去後、1箇所 につき5点を3回ずつ測定するものである。この方 法は各箇所の測定精度は高い一方で、表面処理に要 する時間が全行程の半分以上を占め、時間及びコス トの負担のため多くの箇所を測定することが出来な い。健全度評価にはより多くの板厚データを用いる ほうが信頼性が高いため、簡便に広範囲の板厚測定 を行う手法が求められている。

本研究ではパルス渦電流を用いた非接触板厚計測 方法(PEC)¹⁾に着目する。この方法は磁界とそれに誘 発される渦電流を用いるものであり、磁界が海洋性 付着物や腐食生成物などの付着物の影響を受けない ため表面処理の必要がなく、測定時間の削減が期待 できる。本研究では、実構造物において UT と PEC の 2 種類の方法で板厚測定を行い、その結果を比較 することにより、PEC の適用可能性および適用限界 を検討した。

2. 実海洋構造物の板厚測定

2.1. 渦電流板厚測定器について

本研究で用いる板厚測定機器(SHELL 社製)は、 図-1のような測定器と15cm 程のプローブからなる。

図-1 左: PEC 測定器 右: プローブ(水中用)

プローブから磁界を発生させると電磁誘導の原理 により鋼材表面に渦電流が発生する。図-2 に示すよ うに渦電流は鋼材内に浸透していくにつれて減衰し ていく。この継続時間により板厚を算出する。

この継続時間は板厚だけでなく測定対象の磁性に も影響を受けるため、溶接部等、磁性の異なる箇所 では測定出来ない。また、本測定方法では板厚はあ る基準点に対する相対的な割合として得られ、事前 に板厚が既知の健全部を基準点として測定しておく 必要がある。この基準点は磁性の差異を避けるため 同じ測定対象物内に設ける必要がある。

原理上、得られる板厚は測定範囲の平均板厚であ り、孔食のような局所的な腐食形状の測定は出来な い。測定範囲の直径は、プローブから鋼材裏面まで の距離と線形関係にあり、プローブが鋼材から離れ るほど測定範囲が広くなる。精度は板厚の±10%程 度と言われている。

2.2. 測定対象と測定位置

測定は名古屋港内の桟橋において行い、測定対象 は図-3 に示す海側の鋼管杭A(公称板厚 12mm、直径 650mm)、陸側の鋼管杭B(公称板厚8mm、直径500mm) の計2本とする。共にL.W.L.-1mまで被覆防食が、 海中部は電気防食が施工されている。

水深方向の測定位置はすべて海中部とし、鋼管杭 A については L.W.L.-2.5m と-3m の 2 断面、鋼管杭 B においては L.W.L.-1.25m の 1 断面とした。周方向の 測定位置は海側を 12 時とし時計回りに 3 時、6 時、9 時と定め、1 断面当たり 8 箇所設けた。今回の測定で は、測定時間は 1 箇所あたり 15 秒程度であった。

今回の測定場所では付着物の厚みが平均5~10mm

図-4 各測定法における測定範囲

であった。 プローブと測定対象の表面までの距離 (ス タンドオフ)を20mmとり、公称板厚が8または12mm であるため、PEC の測定範囲は約 ϕ 33~42mmと推 定される。UT と PEC の測定範囲の関係は図-4 のよ うになる。 図-4(b)の5点がUT 測定点、斜線部がPEC 測定範囲である。

2.3. 測定順序

まず、付着物除去前に PEC で測定し、その後同一 箇所を表面処理により付着物とさびを除去し、UT で 測定した後に、再度 PEC で測定する。表面処理前後 において PEC で測定する理由は、付着物の有無によ る PEC 測定結果の違いを見るためである。

3. 板厚測定結果

鋼管杭AのL.W.L.-2.5mと鋼管杭BのL.W.L.-1.25m における板厚測定結果を図-5と図-6に示す。両測定 結果とも公称板厚を上回る傾向にあった。

鋼管杭Aにおいて、全体的にUT測定値よりもPEC 測定値の方が大きい値となっており、水深 3m での結 果も含め、UT測定値に対する誤差は絶対値で最大 1mm弱、割合では1~8%となった。表面処理の前後 でPEC測定値を比較すると、前後での差異は± 0.3mm以内であった。

鋼管杭 B においても PEC 測定値の方が UT 測定値 より大きな値となり、UT 測定値に対する誤差は絶対 値で 0.2~0.5mm、割合では 3~6%であった。表面処 理前後の違いは±0.2mm 以内であった。6 時の位置 で測定結果が等しいのは、PEC 測定値を算出する基 準の値を 6 時の UT 測定値としているためである。

図-5 板厚測定結果(鋼管杭 A L.W.L.-2.5m 位置)

図-6 板厚測定結果(鋼管杭 B L.W.L.-1.25m 位置)

4. まとめ

実構造物の海中測定における PEC の UT に対する 誤差は、これまでに陸上構造物で得られている知見 である板厚の±10%以内となった。測定に要する時 間も陸上とほぼ変わらず PEC の海中での運用は可能 であることが示された。UT 測定の際の表面処理は、 海洋性付着物より腐食生成物の除去に大きく時間を 取られるため、貝などの海洋性付着物を粗く除去し た後に除去が大変な錆の上からプローブを当てると いった運用方法が有効であると思われる。

今後は、板厚測定結果における±10%の誤差が健 全度評価の耐荷力に与える影響について明らかにす ることにより、PECの適用限界について検討する必 要がある。また今回測定した鋼管杭は、電気防食に より減肉が少なく孔食もあまり見られなかったため、 減肉が激しく腐食凹凸が大きい場合においても、誤 差を検証していく必要がある。

参考文献

 Robers, M.A. and Scottini, R. (2002): Pulsed Eddy Current in Corrosion Detection, *Proceedings of the 8th European Conference on Nondestructive Testing*, June 17-21, Barcelona, Spain, Paper #Fr.2.2.1.