モルタル中に形成される不均質な多孔質領域の特徴

金沢大学 学生員 柴山 舞 金沢大学 正会員 五十嵐 心一

1. 序論

コンクリートやモルタルの内部構造に関して、骨材 の周囲に骨材界面の影響を受けない領域(バルクセメ ントペースト)よりも多孔質な遷移帯と呼ばれる領域 が存在するとの考え方がある. その一方で, そのよう な遷移帯は存在せず、全体に比べて非常に空隙率の高 い多孔質領域(以後、ポーラスパッチと称す)がペース トマトリックス中でパッチワークのように分布した構 造を形成しているとの指摘もある[1]. いずれの考え方 であっても、そのような多孔質領域の存在とその特徴 は、コンクリートやモルタルの力学的特性のみならず、 耐久性にも影響を及ぼすと考えられるが、実際にポー ラスパッチの分布やパッチ内の組織の特徴を明らかに した例はない.本研究においては、低倍率にて取得し たモルタルの反射電子像から多孔質領域の存在と分布 特性を明らかにし、その内部の組織の特徴について論 ずることを目的とする.

2. 実験概要

(1)供試体の作製

普通ポルトランドセメント(密度:3.15g/cm³)と手取 川産の川砂(密度:2.61g/cm³)を使用して,JIS R 5201 に準拠して,水セメント比が 0.50,セメント砂比が 1:3 のモルタル円柱供試体(直径 50mm,高さ 100mm)を作 製した.打設後 24 時間にて脱型し,材齢 7 日まで 20℃ の標準水中養生を行った.

(2) 反射電子像観察

材齢 7 日にて供試体中央部から厚さ 5mm, 直径 25mm 程度の円盤型試料を切り出し, 24 時間以上エタ ノールに浸漬することで水和反応を停止させた. その 後, t-ブチルアルコールを用いて凍結真空乾燥を行い, 真空樹脂含侵装置にてエポキシ樹脂を含侵させた. 樹 脂の硬化後,表面を耐水研磨紙およびダイアモンドス ラリーを使用して注意深く研磨し,金-パラジウム蒸着 を行い反射電子像観察試料とした.

(3) 画像取得方法および画像解析

走査型電子顕微鏡を用い, 観察倍率 100 倍にて無作 為に抽出した 15 断面の反射電子像を取得した. 得られ

た画像は1148×1000 画素からなり,1 画素は約1.105µm に相当する.取得した15枚の画像に対して目視にて骨 材の抽出を行った. その後, グレースケールに基づい た2値化を施し,画像解析ソフトウェア機能を用いて, 粗大毛細管空隙(径 1.105µm 以上)および 未水和セメ ント粒子を抽出した2値画像を得た.また、平滑化処 理を複数回施すことにより画像のノイズを除去した後, グレースケールに基づき空隙の抽出を行った.いずれ の空隙も個々に独立して存在していることから、膨張 処理を行うことで空隙の密集した領域の抽出を試みた 後,骨材界面と分離するために収縮処理を施した.こ れらの処理を所定回数繰り返すことによって、空隙の 密集した周囲よりも暗い領域を抽出し、これが原画像 と対応することを確認して、これをポーラスパッチと した. 抽出した各相の画素数を計数することにより面 積率(体積率)を求めた.

(4) 初期水セメント比の推定

未水和セメント体積率 VC_{BEI} と初期の未水和セメ ント体積率 VC₀から,式(1)により水和度αを算出した.

$$\alpha = 1 - (VC_{BEI}/VC_0) \tag{1}$$

ポーラスパッチもそのまわりのセメントペーストも, 同じ供試体で同じ養生条件のもとで形成された領域で あることから,水和の進行の程度はセメントペースト マトリックス全体と等しいと仮定した.この仮定のも と,各領域における初期の未水和セメント体積率 VC_{T0} を式(2)より算出した.

$$VC_{T-0} = VC_{T-BEI} / (100 - \alpha)$$
⁽²⁾

なお、VC_{TBEI}は各領域の未水和セメント体積率を表す. 求められたそれぞれの領域の初期の未水和セメント体 積率 VC_{T0} と、セメントの周囲の補集合領域の面積を 初期水量が占めていた部分と考え、その面積から初期 水セメント比を推定した.

結果および考察

写真1は、モルタルの反射電子像と画像演算手順に 従って抽出されたポーラスパッチを示したものである. 写真1(a)の右端の中央部に存在する骨材の間には多 孔質領域が存在する一方で、上部にある骨材の左上領

500um

写真1 ポーラスパッチ抽出の例 : (a) モルタルの反 射電子像 (b) 抽出されたポーラスパッチ

	ペーストマ	ポーラス	緻密な
相の種類	トリックス	パッチ	領域
モルタル中の面積率(%)	44.06	_	_
ペーストマトリックス中	_	20.66	79.42
の面積率(%)			

表2 モルタルの内部組織の面積率

相の種類	ペーストマ	ポーラス	緻密な
	トリックス	パッチ	領域
粗大毛細管空隙(%)	5.36	15.12	3.03
未水和セメント(%)	3.87	0.13	4.84

域は緻密であり、多孔質領域が遷移帯として連続する のではなく、その分布がパッチワーク構造であること は明らかである.このような不連続なパッチワーク構 造はいずれの画像にも確認されたことから、モルタル 中の組織の特徴といってよいと思われる.

ポーラスパッチはおおよそ骨材の周囲に存在し,骨 材の混入がポーラスパッチの形成にかかわることは明 らかであるが,写真1(a)の画像中央部のように,骨材 が周囲に存在しないような比較的広い範囲にわたって 多孔質領域が存在する場合や,写真1(b)にて明らかな ように,画像左下から右上へと画像全体を横切るよう な連続性を有したポーラスパッチも存在した.

表1は、モルタル中の各相の面積率を示したもので ある.本研究で用いたモルタルの配合上のペーストマ トリックス体積率は約42%であり、画像解析により得 られた体積率が44.06%であることから、その差は2% 程度しかなく、適切にペーストマトリックス相の抽出 ができていたものと思われる.そのペーストマトリッ クス全体のうち、約20%がポーラスパッチと考えられ る領域であった.この値はパーコレーションクラスタ 表3 モルタルの水和度および各相の初期水セメン

ト比の推定値

相の種類	モルタル 全体	ポーラス パッチ	緻密な 領域
水和度(%)	89.32		
初期水セメント比	0.55	63.46	0.38

ー閾値よりも低いため、この領域だけで連続したパス を形成できない.しかしながら、写真1に示すように、 ポーラスパッチは骨材周囲や骨材間の狭い領域に存在 する確率が高いことから、骨材体積を加えた相として 系全体が連続することも考えられる.

表2は、モルタル中のセメントペースト相全体とポ ーラスパッチおよび緻密な領域内での未水和セメント 体積率と粗大毛細管空隙率を比較したものである.ポ ーラスパッチはセメントペースト全体の平均的な空隙 率の約3倍の空隙率を示し、残存未水和セメントは極 端に少ない.

表3は、モルタルのペーストマトリックスの水和度 から各相の局所的な初期水セメント比を推定したもの である.ペーストマトリックス内の緻密な領域では, 推定水セメント比は0.38と低く,多量にセメント粒子 が配置された領域であったことになる.写真1より、 そのような領域は骨材間の比較的大きな空間に存在す る場合が多く、セメント粒子の凝集域の残存の可能性 もあると考えられる.一方、ポーラスパッチの水セメ ント比は 63.46 と他の相と比較して極めて高い.表2 に示したように、残存セメントがほとんどないポーラ スパッチになりうる領域は、元々セメント粒子がほと んど存在しない練り混ぜ水が主体の領域であったと考 えられる. このような領域は力学的にも物質移動の観 点からもコンクリートの性能に悪影響を及ぼすと考え られ、この領域の空間構造、例えばその連続性などを 明らかにしていく必要があるものと考えられる.

4. 結論

走査型電子顕微鏡観察より,モルタルの内部には, ポーラスパッチが存在することが確認された.その分 布は,骨材で挟まれた領域に多く偏在する一方で,骨 材間距離の広い領域にも存在し,それらが連続する場 合もあることが明らかとなった.

参考文献[1]Diamond, S. et al., Cem Con Com, Vol.28, No.7, pp.606-612, 2006.