交差点幾何構造の影響を考慮した左折車両挙動のモデル化

名古屋大学大学院	学生会員	○勇川邦浩	名古屋大学大学院	正会員	鈴木一史
名古屋大学大学院	正会員	中村英樹	名古屋大学大学院	正会員	浅野美帆

1. はじめに

日本での交通事故件数が減少傾向にある中でも、歩 行者と自転車の横断歩道上における事故件数は横ばい 傾向にある¹⁾. そのため、横断歩道の安全性を高める 施策が求められる.

横断歩道上での事故の原因としては、ドライバーの 歩行者の発見の遅さや、回避方法の不適切さが挙げら れる.それらの問題を解決するために、交差点の幾何 構造を変更することが考えられる.導入には施策を事 前に比較・検討する必要があるが、構造の変更と安全 性との関係については詳細がわかっていない.特に大 規模交差点では右折には専用現示を割り振られること が多いために、歩行者と交錯するのは左折車であるこ とが多い.そのため、大規模交差点の横断歩道におい て施策を検討するには、単独走行の左折車の走行軌跡 への幾何構造の影響について把握しておく必要がある.

そこで、本研究では幾何構造の影響を考慮した左折 車両の走行軌跡をモデル化することを目的とする.

2. 対象交差点と分析方法

1) 対象交差点の概要

名古屋市内の幾何構造が異なる5つの交差点の9つ の流入部において、ビデオ観測調査を行った.その概 要を表1に示す.なお、隅角部の半径は歩道の巻き込 み線の半径を示す.ただし、歩道の巻き込み線が単曲 線以外の場合には円に近似した値を使用した.

2) 車両のデータ取得方法

左折車の幾何構造による影響を把握するために,左 折車が単独走行するケースについて走行軌跡のデータ の取得を行った.単独走行の条件は左折車が交差点を 通過する間に横断歩道上に歩行者及び自転車が存在せ ず,かつその車両の前方及び側方に他の車両が存在し ない場合とした.また,交差点及びその近傍で停止し た車両や車線変更をした車両,第1走行車線以外から 交差点に進入してくる車両については対象から除いた. 該当する左折車の走行軌跡をビデオ画像処理システム によって補正・補完することで,車両の重心位置での 0.1 秒ごとの走行位置及び速度のデータを得た.

交差点名	末盛通 2		地下鉄 堀田		太閤通 3		西大須	川名	
流入部	東	펀	北	東	南	西	南	西	펀
隅角部の 半径 (m)	9.7	19	17	14	12	17	17	17	21
交錯角(゜)	92	115	63	92	92	86	92	103	75
流出車線数	2	2	3	3	3	3	2	3	2
サンプル数	72	23	47	11	23	5	14	30	13
調査日時 と時間	2008/ 11/18 9:00-12:00		2009/ 6/18 9:00- 10:30		2009/ 10/13 7:30- 10:30		2008/ 1/18 9:00- 12:00	2008/ 12/1 7:30- 10:30	

3. 分析方法

1) 分析の流れ

鈴木ら²⁾は、右折車を対象に走行軌跡を直線、円弧、 クロソイドに分割してそれぞれ近似し、それらの形状 を示すクロソイドのパラメータ A₁、A₂ 及び曲率最大 時の半径 R_{min}を重回帰分析によって求めることで、走 行軌跡を推定する手法を提案している.本研究でもこ の方法を左折車に適用することによって、左折車の走 行軌跡推計モデルを構築する.

2) 走行軌跡の近似方法

上記の研究においては、右折車の走行軌跡を「直線 ークロソイドー円弧ークロソイドー直線」の5分割、 もしくは「直線ークロソイドークロソイドー直線」の 4分割の組み合わせのいずれかで表現している。今回 の左折の場合もこれと同様に、走行軌跡を5分割また は4分割する組み合わせしたときに誤差が最小となる 分割位置を動的計画法により探索する。走行軌跡の分 割においては、曲率が変化している線分をクロソイド、 曲率が0以外で一定の線分を円弧、それ以外の線分を 直線に分類する。さらに分割した走行軌跡の形状を幾

	:*	A ₁		R _{min}		A ₂		サ
交差点 (流入 部)	□ 二 出 車 線	平均 [m]	標準 偏差 [m]	平均 [m]	標準 偏差 [m]	平均 [m]	標準 偏差 [m]	ンプル 数
末盛通	1	12.5	1.8	9.9	1.4	12.3	1.9	14
2(東)	2	14.0	1.7	11.4	1.3	14.4	1.7	58
西十酒	1	18.8	1.3	16.4	1.3	22.8	3.9	8
四人須	2	19.7	2.2	18.8	2.2	24.2	3.6	11
	3	22.6	2.5	19.6	1.9	26.8	3.7	11
川名	1	22.4	1.2	19.6	1.4	19.9	1.9	5
(西)	2	22.4	1.7	20.0	1.9	21.2	2.4	8
(fundation of the second secon								
	0		10	2	20	30		40
図 2 最小速度 V _{min} と V _{mid} の比較								

表2 流入部ごとのパラメータ

何的に推定することによって、クロソイドのパラメー タA₁, A₂, 及び円弧の半径 R_{min}を求める.

3) 走行軌跡推定モデルの手法

上記のクロソイドのパラメータ A1, A2, 及び円弧の 半径Rminを幾何構造要素及び速度などの車両挙動パラ メータから説明するモデルを構築する.この速度には, 停止線や横断歩道といった路面標示によって左右され ない、歩道の巻き込み線の開始位置及び終了位置を通 過する際の流入速度 Vin,及び流出速度 Vout を使用した. 4. 分析結果

1) 走行軌跡の近似結果

隅角部の半径の大きさが異なり、比較するのに十分 な数のサンプルが得られた3箇所の流入部について, 得られた A₁, A₂, R_{min}の平均値と標準偏差を表 2 に示 す. 流出後に外側の車線を通過するほど, A₁, A₂, R_{min} の標準偏差が減少する傾向がある.これは外側の車線 に流出する車両は、隅角部に近い場所を通過するため に軌跡の選択肢が少ないため, 走行軌跡のばらつきが 小さいことを示す.

2) 走行軌跡と最小速度の関係

左折時の速度の代表値として V_{mid}を考える.これに は走行軌跡を5分割する場合には円弧の中点,4分割 する場合には2つのクロソイドの接続点の速度を用い る. 左折時の最低速度 Vmin と Vmid を比較すると, 図2 に示すように両者にはほぼ差がないことから、単独走 行の場合には軌跡が推定できれば、最低速度となる位 置も決まることになる.

3) 左折車の走行軌跡推定モデルの推定結果

走行軌跡を表すA₁, A₂, R_{min}を幾何構造と車両の挙

表3 クロソイドのパラメータの推定結果 (n=238)

• • • • • • • • • • • • • • • • • • • •					
クロソイド1 ム	クロソイド2 ム。				
係数(t值)	 係数(t 値)				
-2.58(-2.54)	2.37(2.77)				
0.340(7.71)	0.305(6.51)				
0.0814(7.52)					
	1.85(2.58)				
0.521(7.07)	0.958(12.3)				
-	-				
0.202(4.67)	0.272(6.31)				
0.718	0.767				
表 4 曲率最大時の半径 R _{min} の推定結果(n=238)					
β _{1,*} (t 值)	β _{2,*} (t 值)				
-6.46(-6.31)	-2.86(-3.77)				
0.390(12.9)	0.0624(3.09)				
0.127(13.1)	0.0363(4.95)				
0.862(16.8)	0.118(3.89)				
	クロソイド1 A1 (系数(t値) -2.58(-2.54) 0.340(7.71) 0.0814(7.52) - 0.521(7.07) - 0.202(4.67) 0.718 Rmin の推定結果 $\beta_{1,*}$ (t値) -6.46(-6.31) 0.390(12.9) 0.127(13.1) 0.862(16.8)				

動から求めるモデルの推定結果をそれぞれ表3と表4 に示す. 表 3 のクロソイドのパラメータ A₁, A₂につ いては重回帰分析を用い、表 4 の曲率最大時の半径 R_{min} については、ばらつきを考慮するため、R_{min}の分 布形を正規分布と仮定した式(1)として最尤法を用い た.

 $R_{\min} \sim N(\mu, \sigma)$

 $\mu = \beta_{1,1}R + \beta_{1,2}IP + \beta_{1,3}Position + \beta_{1,4}$

 $\sigma = \beta_{2,1}R + \beta_{2,2}IP + \beta_{2,3}Position + \beta_{2,4}$

ここに, R: 隅角部の半径, IP: 交差角, Position: 流出位置, β: パラメータ, である.

表3では、速度に関する説明変数においては Vourの みが有意となったが、これは両者に相関関係があった ためである. また, 大型車ダミーはクロソイド2での み有意となったが、これは大型車の回転半径が普通車 の回転半径よりも大きいためである.

5. おわりに

本研究では, 第1車線以外の車線に左折車が流出す ることによって、左折車の走行軌跡がばらつくことを 示した. その影響を含め, 左折車の挙動や交差点幾何 構造の影響を考慮した走行軌跡のモデルを構築した. また、単独走行の左折車では走行軌跡から最低速度と なる位置が把握できることを示した. 今後は単独の左 折車の速度変動の推定,及び横断歩行者の挙動に応じ た左折車の速度と走行軌跡への影響について分析して いく予定である.

参考文献

- 1) 警察庁交通局:平成 20 年中の交通事故発生状況, 2009.3.
- 2) 鈴木一史,中村英樹,石黒公規:信号交差点における幾何 構造と進入条件を考慮した右折走行軌跡のモデル化、土木 計画学・講演集, Vol.39, 2009.6.