二相混合体理論に基づく SPH 法による透水シミュレーション

岐阜大学 学生会員 野々山 栄人 正会員 八嶋 厚 正会員 沢田 和秀 正会員 森口 周二

1.はじめに

地盤工学の数値解析分野では、高度化された構成式を 考慮した有限要素法(FEM)を用いて、様々な地盤の変形現 象を予測することが可能になった。しかし、FEM を用い て大変形問題を解く場合、メッシュの過度な変形による 解の精度低下が問題となる。これに対し、Lucy¹⁾や Gingold ら²⁾によって開発された SPH 法は、Lagrange 型のメッシ ュフリー解析手法であるため、メッシュの過度な変形に よる精度低下に悩まされることなく、大変形問題を解く ことができる。

地盤工学の分野においても、SPH 法の適用事例が増加 しており、興味深い研究成果が報告されている^{3),4),5)}。多 相体である地盤材料を表現するために、二相混合体理論 ⁶⁾を導入した SPH 法の研究 ⁵⁾も行われている。これまでの 研究では、状態方程式による間隙水圧の計算が一般的で あるが、この場合、初期圧力の設定が必要となり、初期 圧力を設定できない複雑な形状の解析モデルを計算する ことが難しい。これに対し、本研究では、間隙水圧を圧 力の Poisson 方程式より得るため、初期圧力を必要とせず、 複雑な形状の解析モデルに対しても計算が可能である。 本研究で提案する解析手法は、連続体として高度化され た地盤の構成式をそのまま導入可能である。また、間隙 水の影響や大変形時の挙動といった非常に複雑な条件下 における地盤材料の挙動を統一的に再現可能であり、従 来の解析手法で取り扱うことができなかった様々な地盤 の問題を取り扱う可能性を秘めている。

本稿では、二相混合体理論を導入した SPH 法を用いて、 飽和多孔質弾性体の自重解析および変水位透水試験のシ ミュレーションを行い、理論解と比較し、解析手法の妥 当性を検討した。

2.SPH 法による連成解析の定式化

SPH 法は、連続体を多数の粒子で離散化する解析手法 である。離散化された粒子群は、平滑化関数を用いて、 連続体として取り扱われる。平滑化関数の値は、評価点 粒子とその周辺の粒子との距離と影響半径によって決定 され、全ての物理量の分布は、平滑化関数の重ね合わせ で表現される。

本研究では、土を固相と液相に分けて表現する二相混 合体理論を導入し、SPH 法を用いてそれぞれを離散化し、 両者の重ね合わせにより地盤材料を表現した。固相、液 相それぞれの計算方法の詳細は論文^{3),4)}に示した。固相と 液相の相互作用には、固相が液相から受ける力f^{sf}と液相 が固相から受ける力f^{fs}を以下の式を用いて表現した。

$$f^{sf} = -\frac{n^2 \gamma_w}{k} \left(u_i^{sf} - u_i^s \right) \tag{1}$$

$$r^{fs} = \frac{n^2 \gamma_w}{k} \left(u_i^f - u_i^{fs} \right)$$
(2)

ここで、n は間隙率、₇, は水の単位体積重量、k は透水係数、 u は速度である。なお、上付添え字は、s、f はそれぞれ固相 および液相を示し、sf、fs は、それぞれ固相の評価点と同位 置にある液相の評価点、液相の評価点と同位置にある固相 の評価点を示す。

f

3. 自重解析

SPH 法による連成解析プログラムの精度を検証するため、 まずは静的な問題として、飽和多孔質弾性体の自重解析を 行った。深さごとの有効応力および間隙水圧分布を土骨格 と間隙水の密度から算出される深度分布と比較し、精度を 検証する。自重解析には、図-1 に示す幅 1.0m、深さ 0.50m の解析モデルを使用した。初期条件として、有効応力およ び間隙水圧を 0Pa とした。土骨格に対する境界条件は、側 方の水平方向変位を固定、底面を水平および鉛直方向を固 定とした。また、間隙水の境界条件は、上面を排水とし、 側面および底面を非排水とした。固相および液相ともに、 壁を構成する粒子を含めて粒子数は 6,100 個、初期平均粒子 間距離は 0.01m、影響半径は 0.021m、粘性係数は 0.002Pa・s、 重力加速度は 9.81m/s² である。解析に用いた材料パラメー 夕を表-1 に示す。

表-1 材料パラメータ			
土の単位体積重量	γ_s [kN/m ³]	19.6	
水の単位体積重量	$\gamma_w [kN/m^3]$	9.8	
間隙率	n	0.5	
透水係数	<i>k</i> [cm/s]	1.0	
ヤング率	<i>E</i> [kPa]	10.0	
ポアソン比	v	0.30	

図-2 に自重解析結果の有効応力および間隙水圧分布を 示す。土骨格に関しては、圧力の空間勾配の精度が悪い ため、密度から算出される深度分布よりやや大きく算定 された。間隙水圧に関しては、深度分布と一致した。

4.変水位透水シミュレーション

図-3

図-3 に示すような、一定の断 面積 A と試料長さ L をもつ供試 体の中を、ある水位差 h₀を初期 状態として浸透するときの水位 の降下量とその経過時間 t を測 定する変水位透水試験(JIS A 1218)では、次式が成り立つ。

$$-adh = k\frac{h}{L}Adt \qquad (3)$$

******** ここで、*a* はパイプの断面積、*k*

変水位透水試験 は透水係数、*h* は水位差である。 上式を試験開始時(*t*=0, *h*=*h*₀)

から終了時($t=t_1, h=h_1$)まで積分すると以下のようになる。 $f^{h_1} dh f^{t_1}, A,$

$$-\int_{h_0}^{h} a \frac{dh}{h} = \int_0^{h} k \frac{dt}{L} dt$$
(4)

上式を解くと、透水係数が得られる。

$$k = \frac{aL}{At_1} \ln \frac{h_0}{h_1} \tag{5}$$

式(5)から得られる透水係数と入力した透水係数を比較して、解析プログラムの精度を検証する。

土骨格に対する境界条件として、固相の粒子は固定し、 変形しないものとした。壁を構成する粒子を含めて液相 の粒子数は4,700個、固相は1,000個である。初期平均粒 子間距離は1.0cm、影響半径は2.1cm、粘性係数は0.002Pa・ s、重力加速度は9.81m/s²である。透水係数を変化させて、 5caseの解析を行った。なお、解析時間は20sとした。各 解析ケースの材料パラメータおよび解析モデルの寸法を 表-2、3にそれぞれ示す。

図-4 に透水シミュレーションで得られた透水係数の時 刻歴を示す。case1~4 は、入力した透水係数とほぼ一致し ていることが確認できた。一方、透水係数が一番小さい case5 では、理論解と差異が生じた。この原因として、解 析の空間解像度(粒子数)が十分でなかったと考えられる。

表-2 材料パラメータ

case		1	2	3	4	5
水の単位体積重量	$\gamma_w [kN/m^3]$			9.8		
間隙率	n			0.5		
透水係数	k [cm/s]	1.0	0.5	0.1	0.05	0.01

Ī	₹-3	解析パラメータ		
	Α	[cm ²]	10.0	
	а	[cm ²]	10.0	
	h_0	[cm]	50.0	
	L	[cm]	50.0	

5.まとめ

SPH 法による連成解析手法の検証を行った。自重解析で は、理論解とほぼ一致し、妥当な結果が得られた。変水位 透水シミュレーションでは、水位が大きく変動するケース に対しては、妥当な結果が得られた。今後は、連成解析手 法の更なる検証として圧密解析を試みる。

参考文献

- 1) Lucy L.B., A numerical approach to the testing of the fission hypothesis, Astron. J., Vol.82, pp.1023-1024, 1977.
- Gingold R.A. and Monaghan J.J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astr. Soc., vol.181, pp.375-389, 1977.
- 3) 野々山栄人、八嶋厚、沢田和秀、地盤の大変形解析問題 に関する SPH 法の適用性についての一考察、地盤力学に おける大変形の予測とシミュレーション法に関するシン ポジウム論文集、pp.49-58, 2007.
- (3) 沢田和秀, 野々山栄人, 八嶋厚, 森口周二, 斜面崩壊土砂の挙動予測解析への SPH 法の適用, 混相流, 22 巻 4 号, pp.339-347, 2008.
- 5) 前田健一, 坂井守, Smoothed Particle Hydrodynamics 法に よる粒状地盤の浸透破壊解析手法の開発, 応用力学論文 集, Vol.7, pp.775-786, 2004.
- 6) Biot M.A., General theory of three-dimensional consolidation, J. Appl. Phys., Vol.12, No.4, pp.155-164, 1941.