粗大毛細管空隙の物質移動特性の反映に関する一考察

1. 序論

セメント硬化体の物質移動特性は、その移動経路と なる毛細管空隙の相互の連結性と連続経路の存在に強 く影響を受ける.そのような連続経路の存在を検出す る方法としてセメント硬化体の電気伝導率の測定があ り、特に、直流回路による電気泳動法は簡便でかつ普 遍的な方法として、その有用性が注目されている.

一方,コンクリートの耐久性に関連して問題となる 物質移動特性には,二酸化炭素や塩素イオンなどの拡 散,および透水性などが挙げられ,それぞれの移動機 構において,毛細管空隙の経路としての関与の程度は 異なることが考えられる.

本研究では、反射電子像にて観察されるような、粗 大な毛細管空隙とセメント硬化体の物質移動特性の関 係を、電気伝導率の変化の観点から考察することを目 的とする.

2. 実験概要

(1) 供試体および反射電子像観察の作製

セメントは普通ポルトランドセメントを使用し,水 セメント比が 0.25, 0.40, 0.50 および 0.60 のセメント ペーストを練混ぜ,直径 100mm,高さ 200mm の円柱 供試体を作製し,材齢 1,7,28 および 91 日まで標準 養生した.なお,水セメント比が 0.25 のセメントペー ストについては,ポリカルボン酸系の高性能 AE 減水 剤をセメント質量に対して 0.5%添加した.所定材齢に て試料を切り出し,凍結真空乾燥装置を用いて水分を 除去した後,エポキシ樹脂を含浸させ,表面を注意深 く研磨し,走査型電子顕微鏡観察試料を得た.

(2) 反射電子像取得および画像解析

観察倍率 500 倍にてセメント硬化体の反射電子像を 取得した.1 画像は 1148×1000 画素からなり,1 画素は 0.221µm に相当する.これを無作為に 10 枚取得し,2 値化処理を施し,未水和セメント粒子および粗大毛細 管空隙(径 0.22µm 以上)の2 値画像を得た.取得した 2 値画像の面積率を求め,これを体積率に等しいとし た.得られた未水和セメント粒子の体積率を用いて, 金沢大学大学院 学生員 内藤 大輔 金沢大学大学院 正会員 五十嵐 心一

初期のセメント体積率との差から水和度を推定した後, Powers の水和反応モデル[1]に基づき,硬化体組織中の 全毛細管空隙量を算出した.

(3) 電気伝導率の測定

所定材齢にて、φ100mm×高さ約50mmの円盤型試料を切り出し、JSCE-G5712およびASTMC1202に準じて電気泳動法を実施した.供試体側面をエポキシ樹脂で塗布し、これの硬化後、3時間の真空飽水処理を行った.直流電源により30Vの電圧を負荷した後、15分後の電流値を測定し、式(1)より電気伝導率σを得た.

電気伝導率
$$\sigma\left(\frac{\mu S}{cm}\right) = \frac{I \cdot L}{V \cdot A}$$
 (1)

ここに, I は電流値(amps), L は供試体長さ(cm), V は電圧値(V), A は供試体の投影面積(cm²)を表わす.

また、セメント系材料の電気伝導率は細孔溶液の電気伝導率 σ_0 に依存することが知られている.本研究においては、Taylor[2]および Snyder ら[3]のモデルを使用して、細孔溶液の電気伝導率 σ_0 を推定した.取得した細孔溶液の電気伝導率 σ_0 とセメントペーストの電気伝導率 σ の間には、有効理論に基づき、以下に示すような関係を仮定した.

$$\frac{\sigma}{\sigma_0} = \frac{1}{F} = \phi \cdot \beta \tag{2}$$

ここに、Fは形状係数(フォーメーションファクター)、 ϕ は物質移動に関係する毛細管空隙率、 β は幾何学的 特徴を表わすパラメータである.

(4) 平均自由行程の算出

粗大毛細管空隙を抽出した 2 値画像について,任意 の距離 r を持った線分をランダムに落としたとき,そ の線分の両端が同一相に載る確率(2 点相関関数 $S_2^{(P)}(r)$) を求めた. 2 点相関関数の初期値 $S_2^{(P)}(0)$ は,着目相の 体積率 Vv と等価である.また,関数値の初期勾配は, 比表面積 Sv を表わす.本研究では,これらの値を用い て,平均自由行程 λ を式(3)に基づき算出した.

$$\lambda = \frac{(1 - Vv)}{-\frac{dS_2(p)(r)}{dr}\Big|_{r=0}} = \frac{4(1 - Vv)}{Sv}$$
(3)

3. 結果および考察

図-1 は、材齢の進行にともなう電気伝導率の変化を 示したものである.いずれの水セメント比についても、 材齢の進行にともない、電気伝導率は減少する.これ は、水和反応が進行し、伝導性の高い毛細管空隙相の 構造が変化することに起因している.また、同じ材齢 について比較すると、いずれの材齢においても、水セ メント比が小さいものほど電気伝導率が小さいが、材 齢の進行にともなう変化は小さい.

図-2 は、正規化したセメントペーストの電気伝導率 値 log(σ/σ₀)と Powers のモデルから推定される全毛細管 空隙率の関係を示したものである.ここにパラメータ σ/σ₀ は、物質の透過しやすさを反映する値であり、こ れが小さくなることは、硬化体組織としての物質移動 抵抗が増すことを示す.両者の関係は図中で示される ように、バイリニアー型の直線で表わされる.全毛細 管空隙量が約 0.20 よりも大きい場合に比べて、0.20 よ り小さい場合の方が全毛細管空隙量の減少に対する log(σ/σ₀)の減少割合が大きい.これらのプロットに対応 する配合および材齢は、水セメント比が 0.25 の各材齢 と水セメント比が 0.40 の長期材齢である.すなわち、 組織が緻密になり、毛細管空隙量がある程度にまで減 少してくると、物質移動に対する抵抗が急激に増すこ とを示している.

図-3 は、図-2 と同様に、電気伝導率値 log(σ/σ₀)と反 射電子像の画像解析から取得した粗大毛細管空隙率の 関係を示したものである.水セメント比が 0.40, 0.50 および 0.60 の各プロットに対しては直線で近似できる 関係が認められるが、水セメント比が 0.25 のセメント ペーストでは、 log(σ/σ₀)と粗大毛細管空隙率間の関係 は、明らかに異なる.

図-4 は、材齢の進行にともなう平均自由行程えの変 化を示したものである.平均自由行程は、粗大毛細管 空隙同士の平均粒子間距離を表わすパラメータであり、 これが大きいことは、粗大毛細管空隙間に存在する固 体相の距離が大きいことを意味する.水セメント比が 0.50 より大きい場合、毛細管空隙量が減っても平均自 由行程はほとんど変化しない.一方、低水セメント比 の場合においては、材齢の進行にともない、平均自由 行程は大きくなる.たとえば、図-3 において、粗大毛 細管空隙率がほぼ等しい、水セメント比が 0.25 の材齢 7 日と水セメント比が 0.40 の材齢 91 日を比較すると、

平均自由行程はほぼ等しいが両者の log(σ/σ₀)は異なる. 高水セメント比の場合においては,反射電子像観察に て検出される毛細管空隙以外にも分解能以下の微細な 毛細管空隙が多く存在し,それらが経路となって画像 にて観察された粗大空隙は,連続したネットワークを 形成していると考えられる.一方,低水セメント比の 場合では,画像にて検出されていない微細な毛細管空 隙の量はかなり少ない.このため粗大毛細管空隙間の 距離は等しくとも,それらの連結の程度は小さくなる と考えられる.さらに,電気伝導率測定においては, 細孔溶液で飽和した毛細管空隙が伝導相となるが,低 水セメント比における緻密な組織と自己乾燥の発生を 考慮すると,観察された粗大な空隙は不飽和であるこ とも考えられる.これらの要因により,高水セメント 比とは異なる電気伝導性を示したものと考えられる.

4. 結論

高水セメント比では、粗大毛細管空隙は物質の連続 した経路の一部となりうるが、低水セメント比では、 それは非連結性の空隙として存在する可能性がある. したがって、低水セメント比では物質移動特性を粗大 空隙の特徴に直接関係づけて推定することは困難なよ うである.

参考文献: [1]Powers,T.C. ASTM Bulletin, No.158, pp.68-76, 1949 [2]Taylor,H.F.W., Adv Cem Res, Vol.1, No.1, pp.5-17, 1987. [3]Snyder,K.A. et al., Cem Conc Res, Vol.33, pp.793-798, 2003.