ファイバーで補強された粒状体のミクロ・マクロの変形破壊解析

名古屋工業大学	学生会員	〇山口智世、	正 会 員	前田健一
ブリストル大学	E. Ibraim			
名古屋工業大学	学生会員	松本 崇、	前河亮太	

1. はじめに

短いファイバー(短繊維材)による地盤の補強 工法が多く用いられ、その特性を明らかにしよ うと多くの研究が行われている¹⁾⁻⁵⁾。一般的に、 補強効果はテンションによる粘着力増加による ものとされているが、一方で補強効果はある程 度変形することで初めて発揮されるねばり効果 にあるとも考えられている。本研究は、ファイ バーの補強効果メカニズムについてマクロとミ クロの立場から検討し、その設計方法について 検討することを目標としている^{3),4)}。本論文では 2次元個別要素法(DEM)解析を実施し、内部構 造の変化を観察した結果を報告する。

2. 解析手法

DEM を用いてファイバー混合土の二軸圧縮試 験を行った。ファイバーはヒンジとして働くボ ンドを用いて小さい円形粒子をつなぐことで表 現し(図-1)、破断しないものとした。解析に 用いたパラメータは表-1 の通りであり、力学パ ラメータは既報⁴⁾に詳しい。

Contact bond

図-1 DEM によるファイバーのモデル化

表-1 解析に用いたパラメータ			
unit	value		
(Mg/m^3)	9.1		
(mm)	$1 (d / D_{max} = 0.1)$		
(mm)	150		
(Mg/m^3)	2.65		
	circle		
(mm)	10		
(mm)	5		
(mm)	7.1		
	1.3		
	1.1		
	解析に用いたパ・ unit (Mg/m ³) (mm) (mm) (Mg/m ³) (mm) (mm) (mm) (mm) 		

* d = diameter, l = length, $\lambda = \text{aspect ratio} (\lambda = l/d)$. * $D_{max} = \text{maximum grain size}$, $D_{min} = \text{minimum}$ grain size, $D_{50} = \text{mean grain size}$, $C_u = \text{coefficient of}$ uniformity (D_{60}/D_{10}), $C_g = \text{coefficient of gradation}$ ($D_{30}/D_{60}*D_{10}$), $\rho_s = \text{density}$.

作成した供試体の様子を図-2 に示す。ファイ バー部分が、通常の粒子集合体部分である母材 部分(マトリックス)にランダムに分布した混 合体となっており、後者部分の間隙比を 0.24 に 調整した。最大主応力方向を y 方向とし、直ひ ずみ ε_{xx} と ε_{yy} 、体積ひずみ ε_v 、平均主応力 σ_m と 最大せん断応力 τ_m を用いて整理した。

図-2 DEM によるファイバー補強土のモデル

3. 解析結果および考察

図-3、4は、ファイバー混合率(マトリックス に対する質量比)が異なる場合における、等方 圧縮下における間隙比および平均張力の変化を 表している。ファイバーの混合比が高いものほ ど圧縮性が低くなっており(図-3)、ファイバ ーの平均張力は若干ではあるが混合率が高い方 が大きい(図-4)。

供試体内部をみると、ファイバーの曲率変化 が大きい箇所であり、密に混入されているほど その傾向が強いようである。図-5 は側圧一定の 場合のマクロなせん断挙動を示しており、混合 率が高くなると破壊近くの中ひずみ位から補強 効果が現れ、強度と正のダイレイタンシー挙動 が高くなっている。また、ファイバーの平均張 力も鉛直ひずみが 0.2%程度までは変化せず、そ の後、破壊付近で顕著な増加を示す(図-6)。

ー般的には、最小主応力または主ひずみ方向 に配向するファイバー内に高い張力が発生する と考えられているが、図-7のファイバーの張力 の空間分布をみると強い指向性は見られない。 実際にはファイバーは破断されることが観察さ れているが(著者らもアルミ棒積層体実験でも 確認している)⁶、張力分布には破断も考慮する 必要があると考えている。

図-6 せん断時のファイバー内の平均張力の挙動

図-8 は最大・最小主応力方向の構造の強さの 変化を示しており、この値が大きいほどその方 向のミクロ構造は強く高いマクロの耐力を有す ることになる⁷⁾。無補強の場合、最大主応力方 向の強さはほとんど変化していないが、最小主 応力方向に構造強さが失われている。一方、補

図-7 ファイバー張力の空間分布: ファイバー混合率 0.6%、鉛直ひずみ 0.2%程度

図-8マトリックスの粒子構造強さのせん断による変化

強によって、構造の強さが失われにくくなって おり、これが強度増加をもたらしているといえ る。

4. おわりに

本論文では、粘り効果はファイバーに囲まれ たミクロゾーンにおける拘束力増加による座屈 の抑制であると考えた。今後はファイバーの長 さ、剛性、配向が、母材-ファイバー間の拘束 効果に及ぼす影響について議論する。特に、粒 子回転について詳細に検討し、さらに、実験に よる内部挙動の観察、三次元 DEM 解析を進める。 これらの結果からマイクロメカニクスに着目し た物理モデルの構築が可能であると考える。

参考文献: 1) 第 21 回ジオシンセティックスシ ンポジウ論文集, 2) Gray, D.H. & Ohashi, H. (1983), J. of Geotech. Eng. 109 (3): 335-353., 3) Ibraim, E. et al. (2006). Int. Symp. on Geotechnics of Particulate Media, 4) 山口等(2008): 実務利用を目指すマイクロジオ メカニスクに関するシンポジウム発表論文集, pp.17-22., 5) Diambra A. et al. (2007), Geotechnique., 6) Heineck, K.S., et al. (2005): J. of Geotech. and Geoenv. Eng. 131 (8): 1024-1033., 7) Maeda, K. & Hirabayashi, H. 2006. *Journal of Appl. Mech., JSCE*: 623-630.