ノシャン

シラス漁船から得られるデータを用いた海底地形図の作成に関する研究

1. はじめに

現在,日本で海岸侵食が問題になっており,静岡 県・愛知県を跨ぐ遠州灘も例外ではない.海岸侵食対 策には海底地形データの確保が必用であるが,広域・ 高頻度な海底地形データが不足しているのが現状であ る.

そこで本研究ではシラス漁船に注目した. 冬期を除 き,ほぼ一年中操業しているシラス漁船に搭載されて いる魚群探知機と GPS から必要データを取得して海 底地形を作成しようというものである(岡辺ら,2008). そこで得られるデータの精度を高精度なマルチビーム 深浅測量で得られた海底地形図と比較した. また,そ の誤差要因となる船体動揺について現地実験を行い, 精度向上について検討した.

2. 取得データの解析

図1が3日間(2008年7月14日,17日,21日)で得 られたデータを用いて作成した海底地形コンター図で ある.沖合 2.5km 程度までの水深変化を捉えており, 水深 7m 付近に存在するアウターバーも確認すること ができた.

図1 今切口周辺の海底地形図

図中の赤線がナローマルチ深浅測量(2008 年 7 月 18 日)の測線であり、南北方向に 1.2km 程度、東西間隔 0.25km(ライン 7、8 は 0.5km)である. 図 2 がナローマ ルチで得られたライン 1 における海底断面を示したも のである. 海底勾配は 1.5/100~2/100 程度と遠浅な地 形であることが分かる. 全ての測線においても同様な 傾向が見られた.

豆間仅附件子八子建成工一	户不	○小奴伯平
豊橋技術科学大学建設二	L学系	岡辺拓巳
豊橋技術科学大学建設工学系	正会員	青木伸一
豊橋技術科学大学建設工学系	正会員	加藤茂

曲场壮准利学士学冲动工学文

シラス漁船から得られた海底地形データをナローマ ルチで得られた測深データと比較して、その精度を検 証した.図3がマルチビーム深浅測量とシラス漁船か ら得られた海底地形図の対応する位置での水深を比較 したものである.各水深で比例関係を示しており、高 精度測量と同様な水深変化を捉えていることが分かる.

図2 ライン1の海底地形断面図

図4がマルチビーム深浅測量で得られた水深を真値 とし、シラス漁船を用いて得られた水深と比較した各 水深での測深誤差を各水深で示したものである.各水 深で多少の変化はあるものの、シラス漁船から得られ た測深データが平均して0.98m深い値を算出した.こ の誤差要因として船体動揺が大きく関係していると考 えられる.

3. 船体動揺

船体動揺の中で回転周期運動であるロール・ピッチ, 上下運動であるヒーブが他の動揺による測深誤差に比 べ大きな影響を及ぼすと考えられる.これらの動揺を 明らかにするため,操業海域で実働しているシラス漁 船を用いて2008年11月8日に船体実験を行った.図 5に船体実験の航跡を示す.観測期間中の有義波高は 0.6m,有義波周期は6.0s,平均風速は3.5m/sであった.

図5 船体実験の航跡

Casel~4 において,モーションセンサでロール・ピ ッチを,RTK でピッチ・ヒーブの計測を行なった.表 1 に各航跡の条件を示す.

表1 各航跡の条件

航跡No.	平均水深(m)	平均船速(kt)	進行方向
1	8.1	2.3	岸に平行(東西両方 向)
2	16.4	2.5	岸に平行(東西両方 向)
3	11.9	3.9	沖から岸
4	9.5	4.7	岸から沖

図6にCaselのある1分間における船体動揺変化を 示す.岸に平行に航行しているため、ロールに関して は波の影響を受けやすく、ピッチに比べ大きな値を示 しているのが分かる.4つのCaseでロール・ピッチを 計測したところ、最大動揺角が5°程度であった.この 値は、海底勾配を1.5/100、水深を20mとした場合で の水深誤差は0.02m程度となる.このことから実験日 の気象条件では、回転周期運動は水深誤差にほとんど 影響しないことが分かった.

図6のヒーブの変化を見ると、0.15m 程度を上下し ており、水深変化に関しても同様な変化が見られた. 両者の位相が0,相互相関係数は0.6と比較的高い相関 を示し、水深変化による誤差はヒーブが大きく影響し ていることが分かった.これにより水深変化の移動平 均を取ることでヒーブによる誤差を解消できると考え られる. 図7が Case2 におけるヒーブ誤差の除去前と7秒間 の移動平均した時のナローマルチとの水深比較を示し たものである.除去前に比べ,移動平均した方は水深 変化のばらつきがやや軽減されているものの,ヒーブ による水深誤差が移動平均だけでは除去できないこと が分かった.

図6 Caselのある1分間における船体動揺変化

4. おわりに

操業海域で船体実験を行なうことで、ロール・ピッ チ・ヒーブの動揺特性を把握することができた.回転 周期運動であるロール・ピッチに比べ上下運動である ヒーブが水深誤差の割合を大きく占めていることが分 かった.

しかし、ナローマルチとの比較で明らかになった誤 差の解消には至らず、今後もこの誤差要因について検 討していきたい.

参考文献

岡辺拓巳・青木伸一・河村雅彦(2008):シラス漁船 を利用した広域・高頻度海底地形図の作成とその応 用に関する研究,海岸工学論文集,第55巻, pp.661-665