2004 年福井豪雨を誘因とする斜面崩壊の検出と広域災害危険度評価

福井工業高等専門学校	正会員	辻野利	叩彦
福井工業高等専門学校	(∋清水	誠
豊橋技術科学大学	正会員	河邑	眞

1. はじめに

山間部における,豪雨による土砂災害の対策を実施する ためには,どの地点が危険であるかをあらかじめ特定する危 険度評価を的確に行うことが求められる.しかし,災害危険度 評価を行う際,広域にわたる降雨情報,災害記録,および地 形,地質,植生といった詳細なデータベースが得難く,正確 な危険度評価を行うことが困難であるなどの問題点も指摘さ れる.このような問題点を解決するために,筆者らは 2000 年 東海豪雨を誘因として発生した土砂災害を事例として, IKONOS データや細密な森林データベースを用いて土砂災 害の危険度評価を試みている.また,警戒避難勧告や砂防 施設計画に有用な土砂災害対策支援 GIS¹⁾を構築している.

本研究では,2004 年福井豪雨を誘因として発生した斜面 崩壊について,SPOT 5 衛星画像を用いて検出を行い災害 記録の作成を行った.また,各種地理情報や降雨データなど を用いて広域での土砂災害危険度評価を試みた.

2. 福井豪雨の概要と使用データ

2004年7月17日から18日にかけて,福井県嶺北地方を 中心として集中豪雨が発生した.最大時間雨量は福井市 ((旧)美山町)で87mm/hourを観測した.福井豪雨では,足 羽川堤防の決壊による浸水被害や,福井市,鯖江市などに おける土砂災害が報告されている.そこで本研究では,鯖江 市や越前市を含む丹南地域を解析対象域として設定した. なお,本研究では表1に示すデータを使用した.

3. 衛星画像を用いた斜面崩壊の検出

本研究では、SPOT 5 データを用いて斜面崩壊の検出を試 みた.前処理として画像のオルソ補正処理を行った後,空間 分解能が約 2.5m の HRV-P(パンクロマチック画像)と約 10m 分解能の HRG-X(マルチスペクトル画像)を合成したパンシ ャープン画像(分解能が約 2.5m のカラー画像)を作成した. 本研究では、このデータを用いて崩壊箇所の検出を試みた. なお、斜面崩壊の検出方法は、筆者らの方法 ²を用いた.

SPOT 5 のパンシャープンオルソ画像を用いて斜面崩壊を 検出した結果を図 1 に示す.なお,検出結果には小規模な 崩壊も含まれるため,輪郭を強調して表示している. 鯖江市 東部の河和田地区(山間部)において,林道周辺に多くの斜 面崩壊が検出されている. 画像の北東部に崩壊が集中して いるが,これらは誘因となった降雨量との関連が強い.

精度検証の結果を図2に示す.なお,検証データは,豪雨後に撮影された航空写真(斜め観測を含む)を参照し,位置の特定ができた20箇所をポリゴンデータとして作成した.X

表 1 使用データ

データ名	備考
衛星	SPOT Image 社, HRV-P および HRG-X
データ	観測日:2004年8月12日
標高	北海道地図(株)発行 10m メッシュ DEM
地質	地質調査所発行 地質図 1:200,000 をデジタイズ
植生	環境省発行 第6回第7回自然環境保全基礎調
	査による植生図(1:25,000)をデジタイズ
降雨	気象庁電子閲覧室 2004年7月17日~18日の
	雨量データ

図1 解析対象域における斜面崩壊検出結果

軸は崩壊規模,Y 軸は推定崩壊規模であり精度良く検出で きたことを示すラインとして同図中にY=Xを描いた.検証 の結果,崩壊面積が精度良く捉えられていることが分かる.

分類	アイテム	カテゴリー
植生	樹種	チシマザサーブナ群団,オオバクロモジーミズナラ群集,ブナニ次林,ユキグニミツバツツジーコナラ群集,落葉広葉低木群
		落, 伐採跡地群落, スギ・ヒノキ・サワラ植林, 竹林, ゴルフ場・芝地, 路傍・空地雑草群落, 果樹園, 造成地
地質	地質	チャート,デイサイト-安山岩火砕岩,トーナル岩・花崗閃緑岩及び閃緑岩,花崗閃緑岩・花崗岩及び花崗斑岩,結晶質
		石灰岩,玄武岩・砂岩・泥岩及び石灰岩・変はんれい岩を伴う,砂岩,砂岩・泥岩及び礫岩,砂岩・礫岩・珪長質凝灰岩
		及び凝灰質泥岩,砂岩優勢な砂岩泥岩互層,砂及び礫,泥・砂及び礫,泥質混在岩,陸上-水底安山岩溶岩及び火山
		岩,陸上流紋岩溶岩及び火砕岩・礫岩を伴う,流紋岩-デイサイト溶結凝灰岩及び流紋岩溶岩・非溶結,礫
地形	標高	0 から 800m までを 100m 毎に区分
	斜面傾斜角	0°から80°を5°毎に区分
	斜面傾斜方向	北, 北東, 東, 南東, 南, 南西, 西, 北西, 平坦地
土砂災害	災害履歴	過去の地すべり発生の有無
福井豪雨	最大時間雨量	0mm/h から 80mm/h を 5mm/h 毎に区分
	実効雨量	0mm から 120mm を 10mm 毎に区分

表2 危険度評価に用いた属性データ

5. 数量化理論を用いた土砂災害危険度評価

5.1 斜面ユニットの抽出

斜面の危険度評価を実施する際,筆者らは森林簿の属性 データを使用し,最小の領域として森林計画図の小班を用い てきた.本研究では,対象域の森林簿ならびに森林計画図 が入手できなかったため,斜面ユニット単位で危険度評価を 試みた.なお,斜面ユニットとは,図3に示すような尾根線と 谷線に囲まれた一つの斜面領域である.本研究では,10mメ ッシュ DEM を用いて Arc GIS の水文解析機能により対象域 の斜面ユニットの抽出を行った.その結果,対象域からは 3,444 の斜面ユニットが抽出された.

5.2 危険度評価結果

本研究では,表2に示すデータを用いて数量化理論II類 により斜面崩壊の危険度評価を行った.危険度評価の結果 を図4に示す.同図中,危険と評価された斜面ユニットは,や まぶき色,安全と評価された斜面ユニットは白色,斜面崩壊 の発生箇所は赤色で示す.危険度評価の精度を検証するた めに,本研究では以下の式を用いた.

$$AR = Ad / Ao \tag{1}$$

ここで, AR は適合度, Ad は, 実際の崩壊域を含み危険と 判定された斜面ユニットの総数, Ao は実際の崩壊域を含む 斜面ユニットの総数である. 福井豪雨による斜面崩壊に対し て適合度を計算したところ, 0.70であった. 参考文献¹⁾の結果 と比較すると, 適合度は若干低い値となった. これは, 森林簿 における間伐の実施状況や林齢など, 山間部の詳細なデー タを取り込むことができなかったことに起因すると考えられる.

6. まとめ

本研究では、広域にわたる災害記録を作成することを目的 として 2004 年福井豪雨を誘因として発生した斜面崩壊の検 出を試みた.また、数量化理論Ⅱ類を用いて素因と誘因の両 者を考慮した斜面崩壊の危険度評価を行った.今後の展望 としては、検証データの充実を図ること、森林簿などの詳細な データベースを利用することなどが挙げられる.

図3 斜面崩壊ユニットの概念

図4 数量化理論Ⅱ類による斜面崩壊危険度評価結果

謝辞 本研究は,科研費(18710156)の助成を受けたものである.ここに記して謝意を表す.

参考文献

- 河邑眞, 辻野和彦, 大辻喜典: 広域災害特性分析結果を 用いた土砂災害対策支援 GIS の検討, 自然災害科学, Vol.25, No.1, pp.35-50, 2006.
- 河邑眞, 辻野和彦, 辻子裕二, 清水誠: IKONOS データを 用いた新潟県中越地震を誘因とする斜面崩壊の検出, 土 木学会第61回学術講演会論文集, pp. 425-426, 2006.