2004 年新潟県中越地震の余震と宅地盛土造成地の振動特性

利幸	○高原	正会員	金沢大学自然科学研究科
悟	大塚	正会員	長岡技術科学大学
公一	磯部	正会員	長岡技術科学大学
大樹	堀口	非会員	長岡技術科学大学大学院

1. はじめに

新潟中越地震(2004年10月23日発生,M6.8)では, M6.3,M6.1,M6.5の余震が本震発生後40分以内に発生 し,被害を拡大させたと考えられる(図1参照).また, 盛土部分の外周道路を中心に大きな被害のあった高町団 地では,4箇所で大きな崩壊があったが,盛土が広い範 囲で行われていてもクラックが入る程度で崩壊が見られ ない箇所もあり,盛土厚や地山傾斜角による影響が考え られた.そこで,本研究では宅地造成前後の地形図から 盛土厚を算定し,原位置試験や室内試験結果から土質パ ラメータを推定して2次元等価線形解析により宅地造成 地の地震時挙動について,本震および直後の余震につい て検討した.なお,解析には㈱地震工学研究所のSuper FLUSH/2D for Windowsを使用した.

2. 宅地造成地の被害と解析断面

図2に高町団地の盛土範囲(赤線)と斜面崩壊(緑色)およ びクラック(青色)の位置を示す.斜面崩壊は北部の東側斜 面と南部の西側斜面で発生したため,図中の破線で示すよう に東西方向の断面図を造成前と造成後の地形図を基に作成 した.これにより,東側と西側で崩壊側と非崩壊側の両方の 斜面を比較できる.北から断面1~断面4とする.図3に一番 北側の断面1の造成前と造成後の断面図を示す.左側が西 側で右が東側となる.ただし,縦は5倍に引き伸ばして示して いる.これを元に図4のような解析メッシュを作成し,側方境 界をエネルギー伝達境界とし,底面を剛体基盤とした.

高町団地の北西 1.5km ほどに, 防災科学技術研究所の 長岡支所(NIGH01)があり, KiK-NET のデータが取得され ていたため, これを入力波として利用した. GL-104m で取 得された東西方向および上下方向加速度を解析メッシュ底 面に入力した. 層区分と土質パラメータの決定の詳細は参 考文献^{1),2)}に示すが, 盛土以外を実質 3 層に区分し, 初期 パラメータは表 1 に示すように決定した.

図1 震源および高町団地の位置

3. 本震と余震の特徴

図 5(a),(b)に本震および最初の余震の基盤での東西方向加速度波形を示す.また,図 6(a)-(c)に本震および続く3 回の余震時の NIGH01 での東西方向の基盤加速度のフーリエスペクトルを示す.マグニチュードは 18:34 のものがの 最初の余震が一番大きな加速度をもたらしている.東西方向の基盤最大加速度は,本震で 312gal, 最初の 18:03 余

[&]quot;Features of after shoks and amplification properties of developed residential land during Niigata Chuetsu Earthquake in 2004", T. TAKAHARA (Kanazawa Univ.), S. OHTSUKA, K.ISOBE, D. HORIGUCHI (Nagaoka University of Technology)

図 6(a) 本震スペクトル (EW)

震で 205gal, その後 104gal, 111gal である. いずれの場合も 2Hz 付近 と 0.5Hz 付近に卓越振動数があり, 揺れの特徴に大きな違いは見られ なかった.

4. 解析結果および考察 表2および表3に各断面の東西両側の斜 面肩での最大加速度および最大速度を示している. 斜面崩壊が発生 した側を着色して示している.表2から、本震では断面1と断面4では 崩壊側の最大加速度と最大速度がともに大きくなっているが、断面2 と3では崩壊側の加速度が小さく、速度はほとんど変わらない、表3 は余震波形入力時の結果であるが、断面 2.3 の最大加速度が崩壊側 で大きく、本震波形入力時よりも大きくなり、余震による崩壊の進行を 支持している.しかしながら最大速度では崩壊側が小さくなる結果となっ た. 通常 PGV は被害との関連性が高いことが指摘されているが, 今回 の解析からはそのような傾向はつかめなかった. そこで, 斜面肩節点 の時刻暦応答加速度波形の主要動部分15秒間の絶対値平均を重 力加速度で除したもので、平均水平震度係数に相当する値を表4と5 に示す.これらは速度分布的な丸め効果を持っているようで、崩壊斜 面の振動の大きさをほぼ表現できており、その大きさも最大加速度に 比べ,静的設計にも十分に耐えられるものである.斜面崩壊は振動の 増幅だけでなく、3次元効果や過剰間隙水圧の上昇など多くの要因に よって発生するものではあるが, 簡易設計のためには今後も平均水平 震度係数の検討を行う余地があると考えている.

5. 謝辞 本研究は平成17-19年度文部科学省科学技術振興調整費「活 褶曲地帯における地震被害データアーカイブスの構築と社会基盤施設 の防災対策への活用法の提案(研究代表者:小長井一男)」の支援を受 けて行われたものです.ここに記して謝意を表します.

6. 参考文献 (1)(社)土木学会他,「活褶曲地帯における地震被害データアーカイブスの構築と社会基盤施設の防災対策への活用 法の提案」平成 17 年度研究成果報告, (2) T. TAKAHARA, S. OHTSUKA, et al., "Amplification Properties of Developed Residential Land during Earthquake, Proceedings of Fifth China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering, pp79-86, 2007

図 6(b) 余震スペクトル (EW,18:03)

表1 土質初期パラメータ

層名	ρ (g/cm ³)	Vs(m/s)	v
盛土	1.85	120	0.3
増幅層1	1.90	300	0.3
増幅層 2	2.00	350	0.3
増幅層3	2.00	350	0.3
増幅層4	2.10	400	0.3

図 6(c) 余震スペクトル (EW,18:11&18:34)

表2 斜面肩での最大加速度および速度(本震)

section	side	Max acc. at slope shoulder (gal)	Max vel. at slope shoulder (cm/s)
1	east	1139.9	114.2
1	west	666.3	121.6
r	east	862.3	90.1
2	west	685.4	90.1
2	east	810.4	94.4
3	west	783.2	90.3
1	east	571.2	93.4
4	west	783.1	94.0

表3 斜面肩での最大加速度および速度(余震)

		Manage	Man and
section		Max acc.	Max vel.
	side	at slope shoulder	at slope shoulder
		(gal)	(cm/s)
1	east	1038.4	73.1
1	west	504.5	52.5
2	east	826.7	67.5
2	west	837.1	53.1
3	east	913.3	67.7
5	west	923.5	51.0
4	east	400.4	46.5
	west	862.2	50.3

表4 斜面肩での平均水平震度係数(本震)

section	western side	eastern side
1	0.139	0.195
2	0.151	0.167
3	0.162	0.158
4	0.165	0.129

表5 斜面肩での平均水平震度係数(余震)

section	western side	eastern side
1	0.101	0.146
2	0.132	0.139
3	0.150	0.133
4	0.151	0.074