$\begin{array}{l} \vdots \xi = 0.5, \eta = 1 \\ \vdots \xi = 0.5, \eta = 0.5 \\ \vdots \xi = 0.5, \eta = 0 \\ \vdots \xi = 0, \eta = 0 \\ \vdots \xi = 0, \eta = 0 \\ \vdots \xi = 0, \eta = 1 \end{array}$

図1長方形板 (CC-CF)の着目点の配置

3辺固定、他の1辺が自由な長方形 Mindlin 板の曲げ解析

大同工業大学 福井 隆 大同工業大学 正員 水澤富作

1.はじめに 土圧や水圧を受ける擁壁やケイソンの側壁などは,三辺固定他の一辺が自由である平板構 造になる.このような境界条件を有する平板の曲げ問題¹⁾では,厳密な解を求めることが困難になるので, 差分法や有限要素法などの数値解析法が適用される.Timoshenkoの著書²⁾に引用されている三辺固定他の一 辺が自由である平板の表に示されているたわみの結果は,他の数値解析法で求めた値と一致しないことが指 摘されているが,構造力学公式集³⁾や平板に関するデータブック⁴⁾には,Timoshenkoの著書の表がいまだに 引用されている.東と小森¹⁾により,古くから薄板理論に基づくFourier級数展開法を用いて解析的に解かれ ているが,ポアソン比が0に仮定した場合しか取り扱っていない.擁壁やケイソンの側壁は比較的板厚の大 きな平板構造になるので,たわみや断面力に与える面外せん断変形の影響を検討する必要があるが,片持板 を除く固定辺と自由辺を有する厚板の曲げ解析に関する報告事例が見当たらないように思われる.

本論文では, Mindlin 板理論に基づく BF-spline Ritz 法を用いて, 分布荷重を受ける三辺固定他の一辺が自 由である平板と二隣辺固定で他の二辺が自由な平板の曲げ解析を行い, 解の収束性や解析精度について検討 を行い,本手法の有用性および解の妥当性について明らかにしている.

<u>**2**.BF-spline Ritz</u>法による定式化 Mindlin 板理論で仮定される独立した3つの変位関数(たわみ $w \ge 2$ つの回転角 ϕ_x, ϕ_y)は,境界関数とB-spline 関数を掛け合わせて,それぞれ次式で仮定する.

 $\phi_x(\xi,\eta) = F_x(\xi)G_x(\eta)\sum_{m=1}^{k-1}A_{mm}N_{m,k}(\xi)N_{n,k}(\eta), \phi_y(\xi,\eta) = F_y(\xi)G_y(\eta)\sum_{m=1}^{k-1}B_{mm}N_{m,k}(\xi)N_{n,k}(\eta), w(\xi,\eta) = F_z(\xi)G_z(\eta)\sum_{m=1}^{k-1}C_{mm}N_{m,k}(\xi)N_{n,k}(\eta)$ (1) ただし, $N_{m,k}(\xi), N_{n,k}(\eta)$ は, k-1次の正規化された B-spline であり, A_{mn}, B_{mn}, C_{mn} はそれぞれ未定係数 である. $i_x = k-2 + m_x, i_y = k-2 + m_y, k-1$ はB-spline 関数の次数, $m_x \ge m_y$ はそれぞれ ξ 方向 $\ge \eta$ 方向に設 けた区分点の数である. 等質かつ等方性である長方形 Mindlin 板の断面力は,それぞれ次式で与えられる. $M_x = -D(\frac{\partial\phi_x}{\partial x} + v\frac{\partial\phi_y}{\partial y}) \quad M_y = -D(\frac{\partial\phi_y}{\partial y} + v\frac{\partial\phi_x}{\partial x}) \quad M_{xy} = -\frac{1-v}{2}D(\frac{\partial\phi_x}{\partial y} + \frac{\partial\phi_y}{\partial x}) \quad Q_x = \kappa Gh(\phi_x + \frac{\partial w}{\partial x}), Q_y = \kappa Gh(\phi_y + \frac{\partial w}{\partial y})$ (2) ただし, M_x, M_y はそれぞれ y 軸および x 軸回りの曲げモーメントであり, また M_{xy} はねじりモーメントである. $Q_x \ge Q_y$ は, それぞれせん断力であり, D, G, h, vは, それぞれ板の曲げ剛性, せん断弾性係数, 板厚およびポアソン比である. また, はせん断修正係数である. 分布荷重を受ける等方性である長方形 Mindlin 板

$$U = \frac{D}{2} \left(\frac{a}{b} \right) \int_{0}^{1} \int_{0}^{1} \left\{ \left(\frac{b}{a} \right)^{2} \left(\frac{\partial \phi_{x}}{\partial \xi} \right)^{2} + \left(\frac{\partial \phi_{y}}{\partial \eta} \right)^{2} + v \left(\frac{b}{a} \right) \left\{ \left(\frac{\partial \phi_{x}}{\partial \xi} \right) \left(\frac{\partial \phi_{y}}{\partial \eta} \right) + \left(\frac{\partial \phi_{y}}{\partial \eta} \right) \left(\frac{\partial \phi_{x}}{\partial \xi} \right) \right\} \right\}$$

$$+ \frac{1 - v}{2} \left\{ \left(\frac{\partial \phi_{x}}{\partial \eta} \right) + \left(\frac{b}{a} \right) \left(\frac{\partial \phi_{y}}{\partial \xi} \right) \right\}^{2} + 6\kappa (1 - v) \left(\frac{b}{h} \right)^{2} \left[\left\{ \left(\frac{b}{a} \right) \left(\frac{\partial W}{\partial \xi} \right) + \phi_{x} \right\}^{2} + \left\{ \left(\frac{\partial W}{\partial \eta} \right) + \phi_{y} \right\}^{2} \right] \right\} d\eta d\xi$$

$$= \frac{D}{2} \left(\frac{a}{b} \right) \left\{ \Delta \right\}_{mn}^{T} \left[K \right]_{mnrs} \left\{ \Delta \right\}_{rs}$$
(3)

ここで,[K]mnrsは剛性マトリックス,D=Eh³/12(1-²)である.

また, y方向に直線的に変化する面外分布荷重 $Q(\eta)$ による外力ポテンシャルVは,次式で与えられる.

$$V = \frac{1}{2} abh \int_{0}^{1} \int_{0}^{1} Q(\eta) W \,\mathrm{d}\eta \,\mathrm{d}\xi = \frac{1}{2} abhq \{F\}_{rs}^{T} \left\{\Delta\right\}_{rs}$$
(4) ここで, $Q(\eta) = q \{\lambda + (\lambda - 1)\eta\}$ で仮定する。

ただし, λ は $_{q_1/q}$ であり, $_{q,q_1}$ はそれぞれ, $_{\eta=0} \ge_{\eta=1}$ での分布荷重強度を示す.したがって, λ を1に仮定すると等分布荷重になり, $\lambda=0$ は静水圧分布になる. 長方形 Mindlin 板の全ポテンシャルエネルギーПは、 $\prod = U - V$ で与えられる.ここで, $U \ge V$ はそれぞれ,ひずみエネルギーと外力ポテンシャルである.

したがって,Ritz 法を適用して, Π を未定係数ベクトルで極値化すれば,次の線形代数方程式が得られる. $\partial \Pi / \partial \{\Delta\}_{rs}^{T} = [K]_{mars} \{\Delta\}_{max} - \{F\}_{rs} = 0; m, r = 1, 2, ..., i_{x}, n, s = 1, 2, ..., i_{y}$ (5)

3. 数値計算例および考察 表-1には,図-1に示ように,等分布荷重(=1)を受ける正方形板の各位置でのたわみ,曲げモーメントおよびせん断力の収束性に与える spline 次数 k-1 と区分点の数の影響が示してあ

る.ここで,幅厚比 b/h は 1000 と 10 に仮定している.k - 1 は 4 次から 5 次まで変化させ,また区分点の 数 mx と mv は等間隔に配置し, 11 から 41 まで変化させている.ポアソン比 は 1/6 を用いている. これ より,固定辺と自由辺の交点 を除くと,区分点の数を増大させると,一定値への一様な収束状態が得られ ており,また spline 次数を高めれば,少ない区分点の数で収束値が得られている.しかしながら,固定辺と 自由辺の交点 の曲げモーメント M_x , M_y およびせん断力 Q_x の値は,後で述べるように応力集中を示し,収 束値が得られていない.幅厚比の大きな薄板では,断面力の応力集中が顕著に見られる.以上の計算結果を 踏まえて、以 表-1 等分布荷重を受ける正方形板のたわみ及び断面力の収束に与える k-1 と m,=m,の影響: b/æ-1, =1/6

後の計算には、 k-1=5次, m_x = m_v =41 を用 いる.

表 2 には, 等分布荷重 (=1)および 静水圧分布荷 重(=0)を受 ける長方形薄 板(b/h=1000, L

=1/6)のたわみと 法の値は, spline 要

_															
b/h	<i>k</i> - 1	m _x =m _y	W	M_x	W	M_x	M_x	M_y	Q_y	M_x	M_y	Q_x	M_x	M_y	Q_x
1000	4	11	0.002766	0.04294	0.001895	0.03041	-0.009408	-0.05645	0.7852	-0.06596	-0.01099	0.4246	-0.07859	-0.01310	-21.56
		21	0.002767	0.04292	0.001895	0.03041	-0.009419	-0.05652	0.4674	-0.06606	-0.01101	0.4664	-0.06731	-0.01122	-32.17
		31	0.002767	0.04292	0.001895	0.03041	-0.009419	-0.05651	0.4616	-0.06606	-0.01101	0.4627	-0.05938	-0.009897	-38.18
		41	0.002767	0.04292	0.001895	0.03041	-0.009419	-0.05651	0.4611	-0.06606	-0.01101	0.4628	-0.05358	-0.008931	-42.59
		11	0.002766	0.04292	0.001895	0.03041	-0.009423	-0.05654	0.4246	-0.06612	-0.01102	0.5344	-0.07377	-0.01229	-24.60
		21	0.002767	0.04292	0.001895	0.03041	-0.009419	-0.05651	0.4607	-0.06606	-0.01101	0.4488	-0.06164	-0.01027	-34.08
		31	0.002767	0.04292	0.001895	0.03041	-0.009419	-0.05651	0.4610	-0.06606	-0.01101	0.4641	-0.05384	-0.008973	-40.23
		41	0.002767	0.04292	0.001895	0.03041	-0.009419	-0.05651	0.4611	-0.06606	-0.01101	0.4630	-0.04843	-0.008071	-45.22
10	4	11	0.003126	0.04151	0.002142	0.03053	-0.009103	-0.05462	0.4267	-0.06532	-0.01089	0.5344	-0.09762	-0.01627	0.3388
		21	0.003126	0.04153	0.002142	0.03053	-0.009101	-0.05461	0.4268	-0.06526	-0.01088	0.4483	-0.1086	-0.01810	0.3259
		31	0.003126	0.04153	0.002142	0.03053	-0.009101	-0.05461	0.4268	-0.06526	-0.01088	0.4483	-0.1160	-0.01934	0.3196
		41	0.003126	0.04153	0.002142	0.03053	-0.009101	-0.05461	0.4268	-0.06526	-0.01088	0.4483	-0.1217	-0.02028	0.3159
		11	0.003126	0.04151	0.002142	0.03052	-0.009101	-0.05461	0.4267	-0.06514	-0.01086	0.4488	-0.1016	-0.01694	0.3339
	5	21	0.003126	0.04153	0.002142	0.03053	-0.009101	-0.05461	0.4268	-0.06528	-0.01088	0.4483	-0.1135	-0.01891	0.3223
		31	0.003126	0.04153	0.002142	0.03053	-0.009101	-0.05461	0.4268	-0.06526	-0.01088	0.4483	-0.1213	-0.02022	0.3167
		41	0.003126	0.04153	0.002142	0.03053	-0.009101	-0.05461	0.4268	-0.06526	-0.01088	0.4483	-0.1274	-0.02123	0.3134
multipliers			aa^4/D	aa^2	aa^4/D	aa^2	aa^2	aa^2	aa	aa^2	aa^2	aa	aa^2	aa^2	aa

曲げモーメントの精 度比較が示してある. 比較のために, Timoshenkoの解²⁾と 薄板理論に基づく spline 要素法 ⁵⁾を用 いて計算した数値解 (thin plate theory)が 列記してある.これ より, BF-spline Ritz

表 2 等分布荷重を受ける長方形薄板の精度比較: b/h=1000. =1/6

Loading	b/a									
conditions		methods	W	M_x	W	M_x	M_y	M _x	M_x	<i>M</i> _y
	0.6	BF2-spline Ritz method	0.002224	0.03223	0.001088	0.01660	0.007186	-0.05581	-0.04107	-0.05406
		Thin plate theory ⁵⁾	0.002225	0.03224	0.001088	0.01660	0.007181	-0.08287	-0.04107	-0.05407
		Timoshenko ²⁾	0.00271	0.0336	0.00129	0.0168	0.0074	-0.0745	-0.0365	-0.0554
		(%)	-21.8	-4.2	-18.6	-1.2	- 3.0	-33.5	11.1	- 2.5
	0.8	BF2-spline Ritz method	0.002644	0.04014	0.001547	0.02461	0.01188	-0.05283	-0.05567	-0.05596
		Thin plate theory ⁵⁾	0.002646	0.04014	0.001548	0.02461	0.01187	-0.1050	-0.05567	-0.05596
		Timoshenko ²⁾	0.00308	0.0401	0.00185	0.0252	0.0116	-0.0812	-0.0505	-0.0535
		(%)	- 16.5	0.1	-19.6	-2.4	2.3	-53.7	9.3	4.4
	1	BF2-spline Ritz method	0.002767	0.04292	0.001895	0.03041	0.01333	-0.04843	-0.06606	-0.05651
uniform		Thin plate theory ⁵⁾	0.002771	0.04292	0.001895	0.03041	0.01332	-0.1283	-0.06605	-0.05651
loading		Timoshenko ²⁾	0.00333	0.0444	0.00230	0.0317	0.0138	-0.0853	-0.0614	-0.0510
-		(%)	-20.3	-3.4	-21.4	-4.2	- 3.5	-76.1	7.1	9.8
		BF2-spline Ritz method	0.002780	0.04359	0.002200	0.03535	0.01278	-0.04519	-0.07444	-0.05677
	1.25	Thin plate theory ⁵⁾	0.002787	0.04360	0.002200	0.03535	0.01276	-0.1623	-0.07443	-0.05676
		Timoshenko ²⁾	0.00345	0.0467	0.00269	0.0374	0.0142	-0.0867	-0.0708	-0.0470
		(%)	-24.1	-7.1	-22.3	-5.8	-11.1	-91.8	4.9	17.2
	1.5	BF2-spline Ritz method	0.002764	0.04348	0.002392	0.03841	0.01133	-0.04418	-0.07925	-0.05685
		Thin plate theory ⁵⁾	0.002775	0.04350	0.002392	0.03840	0.01132	-0.1988	-0.07923	-0.05685
		Timoshenko ²⁾	0.00335	0.0454	0.00290	0.0402	0.0118	-0.0842	-0.0755	-0.0418
		(%)	-21.2	-4.4	-21.2	-4.7	-4.2	-90.6	4.7	26.5
multipliers			qa^4/D	qa^2	qa^4/D	qa^2	qa^2	qa^2	qa^2	qa^2

素法で求めた数値と比較して,固定辺と自由辺の交点の値を除くと,良く一致した結果が得られている. しかしながら, Timoshenkoの解と比較すると, たわみの値に大きな差が見られ, 辺長比の値や分布荷重の相 違に係わらず, Timoshenkoの解は,20%前後の大きな値を示している.固定辺の曲げモーメントの値を除く と,曲げモーメントに関する Timoshenko の解と本手法の値は,比較的良く一致した結果を示している.

本論文で得られた新たな知見をまとめると,以下のとおりである.1)幾何学的境界条件を自 4. まとめ 動的に満足させた BF-spline Ritz 法は, 一様な収束性を示し, またその収束値は, 解析解や他の数値解析法の 値と比較して,良く一致した結果が得られている.2) Spline 次数を一定に保ったまま,区分点の数を増大す れば、解析精度が高められる.3) 厚板の固定辺と自由辺の交点近傍には、ポアソン比の値が大きくなると, 応力勾配の大きな応力集中が現れる.

参考文献 1) 東,小森: 平板構造, 彰国社, 1974. 2) Timoshenko, S. and Woinowsky-Krieger, S.: Theory of plates and shells. McGraw-Hill, 1962. 3) 構造力学公式集, 土木学会, 1986. 4) Teng H. Hsu.: Structural Engineering and Applied mechanics data handbook, Vol. 3: plates. Gulf Publishing Company, 1990. 5) Mizusawa, T.: Compt. Struct., Vol.53, pp.439-448, 1994.

I-002