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1. Introduction

In recent years a great number of papers are
devoted to the problem of magneto-elasticity,
which is concerned with the interacting effect of
an external magnetic field on the deformation of
an elastic body because of the extensive practical
applications of magnetic material in diverse fields
such as geophysics, electric power engineering,
and microelectronics. However, there is still a lack
in probing general analytical methods for this type
of problem. The objective of this study is to
develop an analytical method for the plane
problem of magneto-elasticity, in which a closed
form solution for an infinite plane containing an
elliptical rigid inclusion in a constant primary
magnetic field is obtained.

2. Analysis of Magnetic Field

The behaviors of electromagnetic solid interaction
are governed by the basic laws of Maxwell and
elasticity. When an electro-magnetic field is
steady, the elastic field and the electromagnetic
field do not contain directly interaction term [1].
The problem to be considered is specified in Fig.1,
where a uniformly distributed magnetic field with
direction angle & is applied to an infinite plane
containing an elliptical rigid inclusion. It is
assumed that the material of the medium is soft
ferromagnetic and isotropic elasticity, and the
permeability of the inclusion is considered the
same as vacuum (Paramagnetism). With the
following conformal transformation

z=w()=E,C+E,/C (1)
the exterior of the inclusion in the z-plane is
mapped to the exterior of the unit circle in the T -

plane. Here E; =(a+b)/2, E, =(a-b)/2,and a
and b denote the major and minor axes of the
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Fig.1 Infinite plane with an elliptical inclusion
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elliptical inclusion, respectively. For a steady
magnetic field, the magnetic field intensity
H(x,y) can be expressed as

H, -iH, = -A'(2) =-A'(Q)/0'(Q) ()

where the complex magnetic potential A(z) is
A(2) =A(%y) =0(x,y) +i- T(x,y) ()
Using mapping function, it becomes
A(z) = Alw(©)] = A(K) (4)
The boundary condition due to the magnetic field
intensity can be expressed as

_{A(a) —A(a)} - 2if{Hx cos(n,x)+H, cos(n,y)} ds
=2 f H, (s)ds + const )
where O denotes a boundary point on the unit

circle in the C-plane. H, represents the magnetic

field intensity normal to the boundary.
Considering the huge difference of permeability
between the ferromagnetic material and the
inclusion, we approximately have

H=PEN g
an
The potential A(T) to be determined can be
decomposed to two parts as
A(L) = A, (©)+A,(©) ()
where A, (C) for the uniform magnetic field H,
is obtained from Eq.(2) as
A, (%) = -Hyo(©)e™ ®)
Substituting Egs.(6), (7) and (8) into (5), and using
Cauchy integral on the unit circle, A,(C) is
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Fig.2 Distribution of magnetic field intensity
along x-axis and inclusion boundary



obtained. The magnetic field
therefore be determined as

olg) = H, ~iH, = H,(E,e™ ~Eoe® /82 w(t) (9)
Fig.2 shows the distribution of magnetic field

intensity along the x-axis and the inclusion
boundary. The parameters used in the computation

are chosen as 8 =45° and b/a=1/2.

intensity can

3. Stress Analysis
Considering the effect of magnetic field, stress
components can be expressed in terms of two
harmonic functions cp(z) and ¢(z) [2] and the
mapping function as

0, +0, = 4Re[®'()/w'(T)]

o, -0, +2it, =

2[&2)(@'(@)@'@))’ Jo' (@) + ‘v'(z;)/m'@)] +p,a(C)

The displacement boundary condition is obtained

(10)

<@ (o _z,((‘;))qy(o) (o)L, [ () (0)do
=2G(u +iv) (11)

where K =3-4v and x=(3-v)/(1+v) are for
the plane strain and the plane stress condition,
respectively. Here, we consider a rigid inclusion
(u =v=0) without loss of generality. Similarly,
stress function CD(Z;) is obtained using Cauchy
integral to Eq.(11) as

o (t)- Lo HiEe 12)

Function lI’(C) is obtained from the condition of
analytical continuity as

(v:
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— + const.
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Knowing the stress functions in (12) and (13),
stress components can be computed by (10).
Figs.3 and 4 show the stress distributions along
the x-axis and the inclusion boundary ( o, and

o, are the normal and circumferential stress

components) with the magnetic field applied at 45
degrees.

4. Stress Intensity Factors

In the case of b=0, the elliptical inclusion is
reduced to a rigid line as shown in Fig. 5. The
stress intensity factors Ky and Ky for the
respective modes I and II can be computed by the
following expression [3]:

A
K, -iK, =me *®'(&,)/Jo’ (&) (14)
where A is the angle between the direction of the
rigid line and the x-axis, C, is the point on the unit

circle corresponding to the inclusion tip. The
stress intensity factors are normalized as

E -iF; = (K; ~iKy)/(H] - p,Nwa)  (15)
Fig.5 shows the variation of Fj at the tip z, (zc)

with changing direction & from zero to 180
degrees for different values of x .
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Fig.3 (o0,,0,) along x-axis

Fig.4 (0,,0,) alongx-axis

Fig.5 Stress intensity factors versus 8

and inclusion boundary (b/a=1/2) and inclusion boundary (b/a=1/2)





