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1. Introduction

As a fundamental solution, the Green’s functions of
heat source in an infinite plane with an inhomogeneity
have found extensive applications in thermal stress
analysis. Therefore, this kind of problems has received
considerable attention in the pasted thirty years. Parkus
[1] studied the Green’s function of a point heat source
in a semi-infinite plane. Fukui et al., [2] derived the
solution of a heat source embedded in an infinite plane
containing a circular hole whose boundary is assumed
isothermal. Fukui et al., [3] treated the problem of an
infinite plane with a circular inclusion having different
material properties from those of the surrounding
matrix, in which heat flux generated from a heat source,
passes through the inclusion and flows into a heat sink.
Zhang and Hasebe [4] derived the Green’s function of
a heat source accompanying with an adiabatic crack.
Recently Yoshikawa and Hasebe [5] studied the
Green’s functions of a pair of heat source and sink in
an infinite plane with an elliptical hole or a rigid
elliptical inclusion, in which the hole and inclusion
boundaries are assumed either adiabatic or isothermal.
In another development [6], these authors derived the
solution of an arbitrarily shaped hole under the heat
source and sink by employing a special conformal
mapping technique. In [7], they considered the Green’s
function of a rigid arbitrarily shaped inclusion under a
pair of heat source and sink.

This paper is aimed at deriving the Green’s function
for a heat source embedded in an infinite plane
containing a debonded rigid arbitrarily shaped
inclusion whose boundary is assumed either adiabatic
or isothermal.

2. Formulation

We consider now a thermoelastic problem of a
debonded rigid arbitrary shaped inclusion undergoes a
point heat source with intensity M and a heat sink with
intensity M locates at infinity. One debonding is
assumed to occur on the interface between the rigid
inclusion and the elastic matrix. L and S denote the
segments of debonded and the bonded boundaries,
respectively, while & and frepresent the coordinates of
both ends of S.

Using a rational mapping function [8]

z=w(g)= EC+Z §+E-1 M
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where Ey, E;, E.; and ¢, are constants, an infinite region
outside an arbitrarily shaped hole in the z-plane can be
mapped onto exterior of a unit circle in the {~plane.
The temperature function can be given as [6]

Y()= ——M—{log({ S )+ I‘log(g g )} + const. (2)

where ¢! =1/¢,, & represents the coordinate of the

point of heat source on the {-plane, k denotes the
conductivity of the material, and the value of the
constant term can be determined by the temperature at
a standard point. By employing the complex stress
functions ¢(¢) and y(¢), the boundary conditions on
the unit circle can be written as
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and & 0)=0 for o on the segment L, whereas &{o)=1 for
oon the segment S. o =a(1+v), k=3-4v for plane strain,
while a'=a, k=(3-v)/(1+V) for plane stress. v, o and G
represent the Poisson’s ratio, the linear thermal
expansion coefficient and the shear modulus of the
material, respectively.

The stress functions can be broken down into two

parts
P(§)=0,(S) +9,(L) (5a)
(&) =y, () +y,(S) (5b)

The first components denote the Green’s function of a
traction-free arbitrarily shaped hole in an infinite plane
under the heat source, which can be given [6]
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where R=(1+v)/(1-v) for plane strain and R=(1+v) for
plane stress. The value of the unknown constant gy, can
be determined by solving a system of linear algebraic
equations derived from (6g). The second functions of
(5) are unknown functions that must be single-valued
and holomorphic outside the unit circle.

Consider now the boundary conditions on the unit
circle to derive the unknown function @(¢).
Introducing a Plemelj function

O=C-a" -/ (M

where



m=0.5-ilnk/27x 8)

Substituting (5) and (6) into (3), a relation is obtained
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Multiplying both sides of (9) with a factor
do[2ni(c-0)y (o)], and carrying out the Cauchy
integration along the unit circle in clockwise direction,
a closed form solution of ¢»(¢) can be derived
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whose value can be determined by solving this system
of linear algebraic equations. Substituting (4) and (6)
into (10), the second stress function can be rewritten as
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Another stress function y»(¢{) can be derived by
analytic continuation on the traction-free boundary as
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3. Stress distribution
Numerical example of stress distribution is
considered for the problem of the heat source
accompanying with a rectangular rigid inclusion. One
debonding is assumed to generate symmetrically on the
interface between the inclusion and the matrix. The

v, ($) =9, (/) - ?;($) (13)
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Figure 1. Stress distribution along the inclusion
boundary and the x-axis.
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Poisson ratio is taken to be 0.3, and the plane strain
state is considered. For the case when the heat source
locates at point (2a, 0) on the x-axis, dimensionless
stress distribution along the x-axis and inclusion
boundary (for the half-plane y>0) under adiabatic
condition is shown in Fig.1. It can be seen that the
normal and tangential stresses on the debonded
boundary are zero, which indicate that the traction-free
condition is satisfied. All the stress components have
singularities at debonding tip, and have concentrations -
at the corners of the inclusion. The stress components
o, and o, have singularities at the point of heat source.
The tangential stress on the x-axis is zero due to the
symmetry. “

4. Conclusion

A closed form solution, the Green’s function, of a
heat source located at any point in an infinite plane
containing an either adiabatic or isothermal debonded
arbitrarily shaped rigid inclusion, is obtained.

The basic point in the derivation procedure of the
Green’s functions for mixed boundary value problem is
the use of the Cauchy integration method that is
usually employed to solve stress or displacement
boundary value problems.
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