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1. Introduction

In this research, the initial condition of a bridge is assessed on the basis of bridge inspection database.
The future conditions of bridges are predicted using Markov Decision Process incorporating the effects
of maintenance actions that will be adopted within the planning period. It is assumed that increasing
the life of the bridge by good maintenance planning will decrease the average cost and environmental
impact per year of the life cycle including construction and demolition stages. The objective functions,
cost and environmental impact, are effected by the maintenance actions directly, and the increase of service
life due to the maintenance actions indirectly. A Genetic Algorithm is implemented as a multi-objective
optimization technique to set up and revise the Pareto optimal set of maintenance plans.

2. Prediction of Bridge Condition and Service Life
Taking the impacts of maintenance actions into account, the condition distribution P; of a bridge
component at year i is predicted through a nonstationary Markov chain model as follows:

1
P,=Fy x H(Q X Mlc,m) (1)
k=1
where, Py, Q, and M, ., are the condition distribution at the inspection year, the condition transition
matrix and the impact matrix of maintenance action m at year k, respectively. The service life of a bridge
is the sum of the present age (/,) and the predicted remaining life. The remaining life of a bridge is the
number of years from the inspection year to the year when the bridge condition (P, ) reaches a given
limit. The remaining life of a bridge (I, ) is determined according to Eq. (2) in the case we apply some
maintenance actions in the planning period. To emphasize the effects of maintenance actions within the
present planning period, it is assumed there are no maintenance actions after this period. A special case
of I, s is the remaining life (/) when we do not apply any maintenance action in the planning period.
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P, =Py x [[(Q x M) x Qrm=® (2)
k=1
3. Objective Functions
The first objective function is the cost C of a bridge system over the maintenance planning period.
C takes into consideration the cost of maintenance actions, Cy,, and the reduction of construction and
demolition costs due to the increase of service life, C; (C = Cp, — Cy). Cpy is calculated as follows:

N T
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i=1 t=1
where N is the number of bridges; T is the length of the planning period; r represents the discount rate
that is assumed to be constant during the planning period; the symbols aq(7), ay(¢), and l.(3) indicate the
area of deck, the surface area of girder, and the length of expansion joint of bridge i, respectively. cm a(%, 2),
Cm,g(i,t), and cm (4, 1) are the unit costs of deck, girder, and expansion joint of maintenance method m
that is used for bridge ¢ at year ¢. C; is calculated as follows:
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where, ¢.(3) and ¢4(¢) are the unit area costs of construction and demolition actions of the whole bridge
distributed on the bridge deck area, respectively. The unit area costs are estimated according to the design
manuals such as Planning Manual of Steel Bridge(1985).

A similar approach is applied for calculating the environmental impact of CO2 emissions. The direct
and indirect environmental impacts F,, and E) are calculated as shown in Egs. (5) and (6), respectively.

= ZZ(ad(z) X €m,d(6,t) + ag(i) X emg(i,t) + le(t) X em (4, 1)) (5)
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By =" aq4(i) x (ec(d) + ea(r)) X (— ) xT (6)
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where, em (1, 1), emg(i,1), and ey, (4, ) are the CO2 emissions per unit area of deck, girder, and expansion
joint of maintenance action m used for bridge 7. The symbols e.(¢) and e4(i) are the CO5 emissions per
unit area of construction and demolition actions of the whole bridge, respectively. At this stage, the C'Oy
emissions per unit area are determined following a linear relationship with the unit area cost.
4. Multi-objective Optimization Using Genetic Algorithm

Because Genetic Algorithm (GA)
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(Liu et al. 1995), it can capture
many solutions simultaneously and €O, Emission (kg)
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5. Conclusions

(1) The future conditions and service lives of bridges were predicted using Markov decision process incor-
porating the effects of Maintenance actions.

(2) GA was successful in searching the near Pareto optimal set of a multi-objective optimization problem.
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