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Introduction

A problem of considerable practical importance is that, of bending of two strips with different
rigidities and elastic properties, partially bonded along a finite straight line. The problem repre-
sent idealization of the bending of two dissimilar materials, such as; welded materials and bonded
metallic and nonmetallic materials. Complex stress function and rational mapping function are utili-
zed to obtain the general solution. The problem is analyzed for a concentrated bending moment appli-
ed at the tip of the strips. Values of stress intensity of debonding (SID), at the debonding tips

are given in demonstrative graphs.
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Fig.1(a) illustrates the physical plane of a strip composed of
two dissimilar materials bonded symmetrically with respect to
the interface, while Fig. 1(b) exhibits the unit circles of the Bl L
mapped planes. Since the derivation of the complex stress func- e

tion ¢;(t;) was previously reported in [1], this paper dedi-

: . . . Materijal I
cates the derivation of the SID at the debonding points C and D el v
of Fig.1. The first derivative of the complex stress function (a)

¢ ;(t;) can be expressed as follows:
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vhere €; and A; are constants expressed in terms of rigidities
. R . . Fig.1. (a) Physical Plane; (b) Unit Circles
D; and Poisson's ratios ¥; of the two materials.
The first derivative of the complex stress function in the phys—
ical plane can be expressed in terms of the SID at the debonding points C and D, respectively, as
follows:
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The terms JKCE , ’\/KdK—a represent the SID at points C, D respectively, and they are obtain-
ed by the following expressions:.
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where, 8+-0.=m+8/2; & is the central angle on the unit circle between points @ and 8 , shown
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in Pig. 1(b). The following dimensionless SID is used, which has a finite value:
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Another expression which demonstrates the physical meaning of the SID is used as follows:
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Results and Discussion 1.0 ; . . ; — —

In order to examine the actual phenomena F —

at the deponding points, two expressions -

has been deduced, as given by egs.4 & 5. L
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of 0.6378 is a demonstration for the value FIG. 2. Dimensionless Stress Intensity of Debonding at the

of the SID when the length of the bond Debonding Tips C and D.
line CD of Fig.1 becomes very small with 40 S S B B | L RS R TS
respect to the strip width. The problenm : |
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ined by interchanging the mapping function b2/7-0.00', Y
in the foregoing formulations. The values
of the SID in Fig.3 illustrate the physic- | ;| D/Di= 0.50 ™.
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al values, from which it is obvious that vz = 0.25
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growing 1is rapid. The values increase

. . F1G. 3. Dimensionless Stress Intensity of Debont_iin§ at the
monotonically and so the debonding Debonding Tips C and D. ( Physical Meaning

develops until the fracture occurs
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