レーザー超音波可視化試験と機械学習を用いた CFRP板の異方性弾性定数の推定

1. はじめに

近年,先進構造材料として炭素繊維強化プラスチック (CFRP: Carbon Fiber Reinforced Plastics)の利用が進んで いる. CFRP は、軽量で高い引張り強度を有する等、力学的 に優れた特性を示すものの,任意の積層構造を持つため,強 い音響異方性を示すことで知られる. そのため, CFRP 中 の欠陥を通常の超音波非破壊評価法で探傷した場合,音響 異方性の影響で,探傷精度が大きく低下する可能性がある. CFRP の音響異方性の性質を明らかにするためには、弾性 定数を決定する必要がある. 従来の異方性材料に対する弾 性定数推定手法は、試験体の一部の切断や、水浸探傷が必要 となる等の方策が取られており、比較的手間がかかる方法 となっている.本研究では,一方向に炭素繊維が配向された 一方向 CFRP に対して、レーザー超音波可視化試験 (LUVT: Laser Ultrasonic Visualization Testing)¹⁾と機械学習を駆使 した新しい弾性定数推定法を開発する.また,推定した弾性 定数を用いて,時間領域有限要素法 (TDFEM: Time-Domain Finite Element Method) による数値シミュレーションを実行 し、解析結果をLUVTと比較することで、本手法の有効性に ついて検討する.

2. LUVT

本節では,弾性定数の推定に用いる LUVT と LUVT 結果 について簡単に説明する. LUVT では図 1(a) に示すように 試験体にレーザーを照射したとき,照射面を伝搬する超音 波を可視化することができる.

(1) 一方向 CFRP 試験片および LUVT の概要

ここでは、図 1(b) に示すような一方向 CFRP 試験片 (東 レ製 T800) を実験・解析対象とする.大きさは x 方向の幅 が 5cm, z 方向の深さが 2cm, y 方向の奥行が 5cm で,密度 は $\rho = 1600$ kg/m³ である.この時,弾性定数 $C_{IJ}(I, J =$ 1,...,6) は不明であるが, CFRP 試験片は一方向積層である ことは自明であるとする.簡単のため,以下では図 1(b) に おける B 面の超音波伝搬にのみ着目し,最終的に B 面の超 音波伝搬を再現するために必要な弾性定数を推定すること とする.そのため,図 1(b) の一方向 CFRP 試験片の B 面に 対し,LUVT を実施した.なお,LUVT では, B 面に対して は,中心周波数が 1MHz の縦波垂直探触子および 1MHz の 斜角探触子を使用した. 〇群馬大学理工学部 学生会員 豊田哲志 群馬大学大学院理工学府 正会員 斎藤隆泰

図1 一方向 CFRP 試験片に対する LUVT(a)LUVT の様子 (b) 一 方向 CFRP 試験片.

図2B面におけるLUVT 結果の一例.

(2) LUVT 結果の一例

B 面における LUVT 結果の一例を, 図 2 に示す. 図 2 は B 面における斜角探触子を用いた場合の, 異なる時刻にお ける LUVT で得られた超音波伝搬の様子を示している. 図 2 より, 繊維方向である x 方向に速く伝搬する擬似 P 波 (qP 波) および対応する擬似 S 波 (qS 波) を確認することができ る. すなわち, CFRP 中を伝搬する超音波は, 同心円状に拡 がることなく, 繊維方向により速い縦波速度伝搬するため, 異方性の影響を強く受けていることがわかる.

3. 異方性弾性波動論

さて,LUVT では、図 2 に示すように、CFRP 試験片表 面を伝搬する超音波を可視化できる.そのため、ここでは CFRP 試験片の B 面における超音波伝搬の解析に必要な弾 性定数を推定する.今, B 面の超音波伝搬の解析に必要な 弾性定数 $C_{11}, C_{33}, C_{55}, C_{13}$ は、Christoffel 方程式を解くこ とで、次のように求めることができる²⁾.

$$C_{11} = \rho V_{L-L}^2 \tag{1}$$

$$C_{33} = \rho V_{L-Z}^2$$
 (2)

$$C_{55} = \rho V_{T\perp ZC-Z}^2 = \rho V_{T\perp LC-L}^2$$
(3)
$$C_{13} + C_{55} =$$

$$\sqrt{(4\rho V_{L-ZL}^2 - C_{11} - C_{33} - 2C_{55})^2 - (C_{11} - C_{33})^2}/2 \quad (4)$$

ここで、 V_{L-L} 、 V_{L-Z} は、それぞれx, z方向に伝搬する縦波 位相速度を表す、 $V_{T\perp ZC-Z}$ (= $V_{T\perp LC-L}$)はx方向に振動 し, *z* 方向に伝搬する横波位相速度 (*z* 方向に振動し, *x* 方向 に伝搬する横波位相速度), そして, *V*_{*L*-*ZL*} は, *x*-*z* 面内を 45 [°]方向に伝搬する縦波位相速度を表している.

4. 画像解析による弾性定数の推定

さて,弾性定数 C_{11} , C_{33} , C_{55} , C_{13} を推定するためには, 密度 ρ は既知であることから,式(1)-(4)の計算に必要な超 音波の位相速度 V_{L-L} , V_{L-Z} , $V_{T\perp ZC-Z}$ を各々,求めれば よい.本研究では,LUVT 結果を画像解析し,異方性弾性 波動論を用いて,これら超音波の位相速度を推定し,その 結果を式(1)-(4) に代入することで弾性定数を決定する.

LUVTによる弾性定数の推定手順は次の通りである.ま ず,LUVTのデータは,映像で出力されるので,それらを 各時間ステップ毎の画像データとして出力する.次に,そ れらの画像についてエッジ処理を行うことで,画像データ から超音波の波面を抽出する.このとき,時刻が異なる2 つの画像データを用意し,それぞれの画像について1つの 着目画素を設定する.そして,それぞれのケースについて, qP 波,qS 波がどのように伝搬したかを画像の差分結果から 割り出す.その結果を用いて,2枚の画像の着目画素位置の 差から各超音波の伝搬距離を計算し,データ測定点におけ る時間差から超音波伝搬速度を測定する.

ただし、問題となるのは、ここで得られる超音波の伝搬速 度は群速度であるということである。そのため、式 (1)-(4) に用いるためには、ここで得られた超音波伝搬速度 (群速 度)を位相速度に変換する必要がある。しかしながら、こ の群速度から位相速度への変換は一般に容易ではない。特 に、 C_{13} に対する位相速度を求めることは困難である。そ こで、本研究では、機械学習を用いてこの C_{13} を推定す る。ここでは、数値解析で弾性定数 C_{11}, C_{33}, C_{55} 、および V_{L-ZL} に対応する 45 方向の群速度、これらから計算で きる弾性定数 C_{13} を求めておく。この場合、 V_{L-ZL} の変 換式を用いずに、回帰分析を用いて C_{13} を求めることとな る。以上より、画像解析で推定した CFRP の弾性定数は、 $C_{11} = 144.95, C_{33} = 14.19, C_{13} = 4.45, C_{55} = 6.09$ GPaで ある。

5. FEM を用いた数値シミュレーションの実行

前節で推定した弾性定数を用いて,時間領域有限要素法 (TDFEM) による数値シミュレーションを実行し,TDFEM 解析結果をLUVT 結果と比較することで,本手法の妥当性 を検討する. B 面における LUVT 結果と TDFEM 解析結果 の比較結果を図3に示す.ただし,図3の上段はLUVT 結 果,下段はTDFEM による結果であり,簡単のため,CFRP の持つ減衰の影響はTDFEM では考慮しないこととした. なお,図3中の左右は,同時刻における結果を示してい ることに注意されたい.TDFEM の解析で用いたパラメー ターは,入射波の周期は $T = 1.0 \times 10^{-6}$ (s),時間増分は

図 3 LUVT と TDFEM による B 面での超音波伝搬の可視化結果 の比較 (a)LUVT 結果 (b)TDFEM 結果.

 $\Delta t = 1.6 \times 10^{-9}$ (s)とし,解析領域全体を正方形のピクセ ル有限要素で離散化した. 全要素数は10万個である. 図3 下段の TDFEM の結果を見ると、B 面では qP 波が繊維方 向,つまり x 軸の方向に速く伝搬していることを確認でき る.この傾向は、図3上段におけるLUVT結果と概ね一致 していることがわかる.一方, qP 波に遅れて, qS 波が発 生する.図3の上段,下段の解析結果を比べると,qS波の 伝搬傾向も概ね一致していることがわかる.全体的に,図 3の上段を見ると、LUVT 結果では、現状の使用機器の性 能上、空間解像度が粗く、波面が明瞭に可視化できていな い箇所がある.しかしながら,LUVTより弾性定数を推定 し, 推定した弾性定数を用いた TDFEM による数値シミュ レーションを実行すれば、図3下段のように、CFRP 試験 片の波面を明瞭に可視化でき,超音波伝搬挙動を把握する ことができる.なお、図3のLUVTでは、実際の試験体に は中央下側に貫通空洞を設けたものを使っている. そのた め,図3右図では、両者の結果において、貫通空洞からの 散乱波を確認することができるが、ここで発生する散乱波 は、弾性定数の推定に特に影響は与えないことを付け加え ておく.

6. おわりに

LUVT と機械学習を駆使した新しい異方性弾性定数推定 手法を開発した.実際に,本手法を用いて,CFRPのおよそ の弾性定数を推定し,推定した弾性定数を用いた TDFEM シミュレーションを実施することにより,本手法の有効性 を示した.今後は3次元での測定,解析を行い,全ての弾 性定数を求める予定である.また,CFRPの減衰の影響を 含めた弾性定数の推定,およびそのシミュレーションも実 施することを検討している.

参考文献

- 1) http://www.tsukubatech.co.jp
- T. Saitoh, A. Mori, K. Ooashi and K. Nakahata : Development of a new dynamic elastic constant estimation method for FRP and its validation using the FDTD method, Insight- Non-Destructive Testing and Condition Monitoring, Vol.61(3),pp.162-165, 2019.
- Testing and Condition Monitoring, Vol.61(3),pp.162-165, 2019. 3) 中畑和之・廣瀬壮一: 非均質異方性材料中の弾性波伝搬解析の ためのイメージベース EFIT の開発と非破壊検査への応用,応 用力学論文集, Vol.12, pp.163-170, 2009.