LUVT を用いた CFRP-コンクリート未接着部分の 検出に関する基礎的検討

1. はじめに

近年,社会基盤構造物や材料に対する維持管理を目的に, 非破壊検査の重要性が高まっている.特に,超音波非破壊検 査法は、最も広く利用されている非破壊検査法の一つであ る. 一方, 先進材料である炭素繊維強化プラスチック (CFRP: Carbon Fiber Reinforced Plastics) を、鋼材やコンクリートの 補強等に利用する事例が近年増加している. その際, CFRP を適切に接着できているか,また,構造物の供用期間中に接 着部分の剥離が生じないかが問題となる. CFRP の未接着 箇所があれば、当然、期待通りの補強効果が得られない可能 性がある.よって,この未接着部分を適切に検出できる非破 壊検査法の確立が必要となる. 一般的に, 土木構造物の検査 範囲は広範囲に渡る. そのため, 効率的に, かつ検査員が判 断しやすい非破壊検査法¹⁾の開発が必要であろう.そこで、 本研究では,一部非接触検査が可能なレーザー超音波可視 化試験 (LUVT: Laser Ultrasonic Visualization Testing) を用 い、CFRP-コンクリート複合試験体の未接着部分の検出を 試みる. 以下では, まず, LUVT について説明する. 次に, 本 研究で用いた CFRP-コンクリート複合試験体について説明 し,最後にLUVT 結果を示すことで,本手法の有効性等に ついて検討する.

2. LUVT 概要

本節ではLUVTと用いた試験体について簡単に説明する.

(1) LUVT とは

まず, LUVT について説明する. 図1は LUVT 装置の全 容を示している. 図1(a)のレーザー遮蔽ボックス内部に図 1(b)に示すように, 試験体を設置し, 試験体にレーザーを照 射する. LUVT では, パルスレーザーを, 試験対象とする材 料の表面に照射し, 熱膨張を発生させることで, 超音波を伝 搬させる. そして, 予め設置しておいた探触子でレーザー超 音波を受信し, その探触子から試験体へ超音波が伝搬する 様子を相反定理を用いて可視化する. そのため, 後に示す図 2-4 では, 送受信を入れ替えることにより, 探触子から超音 波が送信される映像が得られることに注意されたい. なお, 本研究で扱う LUVT では, 超音波伝搬挙動の可視化結果を 連番画像として出力できる. LUVT の仕組みの詳細につい ては, 文献²⁾等を参照されたい.

○群馬大学大学院理工学府	学生会員	蓑輪里歩
群馬大学理工学部	非会員	松原江里
群馬大学大学院理工学府	学生会員	竹田晴彦
群馬大学大学院理工学府	正会員	斎藤隆泰

図1 LUVT 装置 (a) 装置全体図 (b) 実際の LUVT の様子.

図2 CFRP-コンクリート複合試験体の様子.

(2) 試験体概要

本研究で用いた試験体の概要を図 2 に示す. 縦, 横, 120mm×170mm で厚さ 50mm のコンクリート試験片に, 100mm×150mm,厚さ z_cmm の CFRP を接着させる. CFRP は,トレカ T700 のプリプレグを使用したものであり,コン クリートとの接着面は接着しやすいように片面粗し仕様の ものを用いている.また,厚さ z_c は 1mm, 8mm のいずれ かとした.接着のためのプライマーは炭素繊維接着用,貼 付け接着剤はグレーで不透明なアンカー定着用のものを 用いている.ただし,図 2 に示すように,中央やや右側に, 10mm×10mm の未接着部分を設ける.未接着部分は CFRP の接着面にフィルムを貼り付け,空気層を設けることで作成 した.接着剤の厚さはおよそ 2mm 程度である.LUVT にお ける受信探触子は図 2 における紫色の箇所に設置した.用 いた探触子はジャパンプローブ社製の中心周波数が 1MHz

図3 CFRPの厚さが1mmの場合のLUVT可視化結果 (a)260step (b)380step における層間剥離のない場合, (c)260step (d)380step における層間剥離がある場合.

の斜角探触子 (45°, コンポジット型) である. ただし, 一般 的な探触子であるため, 音響異方性を持つ CFRP 内部に超 音波が 45°の入射角で必ずしも入射しないことに注意され たい. そのため, ここでは試験的に, この探触子を用いてい ることに注意する. また, レーザー照射領域は図 2 の水色で 囲んだ矩形領域とした. すなわち, この *x* – *y* 面における照 射領域が LUVT における超音波伝搬の可視化領域となる.

LUVT は、未接着部分有り、無し、および CFRP の厚さ $z_c = 1, 8mm$ の合計 4 パターンに対して実施した.

3. LUVT 結果

以下, LUVT 結果を示す. 図 3,4 は, それぞれ CFRP の厚さ z_c が, $z_c = 1$ mm, $z_c = 8$ mm の場合の結果を示している. た だし, 各図中の (a), (b) は未接着部分がない場合 (欠陥無し), (c), (d) は未接着部分がある場合 (欠陥有り) の場合における, 異なる時刻での超音波伝搬画像の一例を示していることに注 意されたい. なお, レーザースキャン箇所は, x, y 方向それぞ $n, N_x = 1197, N_y = 702$ の合計 N = 842194 点であり, x, y 方向のスキャンピッチ dx, dy はそれぞれ dx = 0.100mm, dy = 0.100mm とした. 受信波形には 500kHz-1.5MHz の バンドパスフィルタをかけている. また, 図 3, 4 中の水平 軸, 鉛直軸はそれぞれ, 図 2 中の可視化範囲の左上を原点と した場合の座標軸を示していることに注意されたい.

用いた CFRP の繊維方向は x 方向 (All 0°) である. その ため, 擬似縦波 (qP 波) は, x 方向に速く伝搬する ³⁾ ことが 知られている. 実際, 例えば図 4(c) には, x 方向に速く伝搬 する qP 波を確認することができる. また, qP 波に遅れて発 生するのは振幅の大きい擬似横波 (qS 波) であり, 図 3,4 の いずれにおいても, はっきりと確認できる.

CFRP の厚さ $z_c = 1$ mm の場合, すなわち図 3(a), (b) の 欠陥無しの場合に着目すると, qS 波は目立った反射・散乱 をすることなく, CFRP 中を伝搬していることがわかる. し

図 4 CFRP の厚さが 8mm の場合の LUVT 可視化結果 (a)260step (b)380step における 層間 剥離のない場合, (c)260step (d)380step における層間剥離がある場合.

かしながら、欠陥が存在する図 3(c), (d) に着目すると、未 接着部分が存在する箇所付近で qS 波の位相が反転してい ることがわかる. 未接着部分として設けた空気層の影響が, CFRP の表面の超音波伝搬に現れていることがわかる. 一 方、CFRP の厚さ $z_c = 8$ mm の場合の図4に着目すると、図 中のいずれにおいても、図 3(c), (d) で示すような大きな位 相の反転は見受けられない. CFRP の減衰が大きいこと、用 いた探触子の性質、未接着箇所が深いこと等が原因で、未接 着部分での散乱による影響をLUVT で捉え切れていないこ とがわかる. 以上の実験結果より、CFRP の厚さ z_c が小さ い場合は、LUVT を用いて CFRP-コンクリート間の未接着 部分を視覚で容易に判断できることを確認できた.

4. まとめと今後の課題

本研究では、CFRP-コンクリート複合試験体の未接着部 分を対象とした LUVT を行った. CFRP が薄い場合は, 試 験者の目で, 未接着部分の有無を判断できる程の可視化結 果を得ることができた. 今後は, 広帯域 AE センサを用い て, 未接着部分の可視化結果のさらなる高精度化を目指す こと, 今回のような LUVT 結果を対象とした深層学習を行 い, CFRP-コンクリートの未接着部分の有無等を AI で判定 すること等を行う予定である.

謝辞

本研究で用いた試験体の作成には、ショーボンド建設株式会社補修工学研究所の協力を得た.また、本研究は R2 年度公益財団法人前田記念工学振興財団研究助成の支援の下、取り組んだものです.この場を借りて感謝申し上げます. 参考文献

- 廣瀬壮一:超音波による構造物診断,日本ロボット学会誌, vol.36(3), pp.186-190, 2018.
- 高坪純治, 王波, 劉小軍, 鈴木修一, 王暁東:レーザー超音波可 視化技術の開発と欠陥検出への応用, 非破壊検査, vol.63(3), pp.142-147, 2014.
- 3) T. Saitoh, A. Mori, K. Ooashi and K. Nakahata : Development of a new dynamic elastic constant estimation method for FRP and its validation using the FDTD method, Insight- Non-Destructive Testing and Condition Monitoring, Vol.61(3), pp.162-165, 2019.