高炉スラグ微粉末中の石こう量が硬化体特性へ及ぼす影響

芝浦工業大学大学院 学生会員 〇白石 真由奈 芝浦工業大学 正会員 伊代田 岳史

1. はじめに

高炉スラグ微粉末 (BFS) を普通ポルトランドセメン ト(OPC)に対して置換された高炉セメントを使用する ことで環境負荷低減効果がある一方, BFS 高置換した 場合, 初期強度が低いことや自己収縮や中性化深さが 大きいことが知られている. しかし BFS 高置換の場合 に三酸化硫黄 (SO₃) 含有量を増加させることによりこ れらの問題点を改善し、初期強度発現、自己収縮低減効 果が得られるとの報告1)がある. 近年, その効果を利用 し、高炉セメント C種に相当するエネルギー・CO2・ミ ニマム (ECM) セメントが開発され、上記報告 1)と同様 に初期強度発現や耐久性の確保などが報告 2)されてお り, 実用化へ向けた検討が行われている. これらのこと から、今後 BFS 高置換セメントの需要は高まると考え られるが、現在レディーミクストコンクリート工場に おいて高炉コンクリートを製造する際、セメント工場 にてあらかじめ OPC と BFS が混和された高炉セメント B種を主体として利用されている. しかし, OPC と SO3 含有量を増加させた BFS のサイロを設置し、混合する ことで様々なニーズに合わせたコンクリートの提供が 可能になると考えられるが、SO3 高含有 BFS を用いた 上で置換率を変化させた場合の物性は明らかではない. そこで本研究では、OPC と SO3 高含有 BFS のセメン トサイロを別途設置できる可能性を検討するため、SO3

量を現在一般的に使用されている約2%よりも多くBFS へ添加し、その際に BFS 置換率が硬化体特性(強度) へ及ぼす影響の把握を行った.

2. 試験概要

2. 1 使用材料および配合

本研究において用いた配合を表-1に示す. 水結合 材比を 50%とし、BFS 置換率と SO3 の添加量および添 加方法を変化させモルタル供試体を作製した. SO3 量は, 石こう無添加の BFS に対して無水石こう (石こう)を SO₃ 換算で 2, 5, 8%とした. 添加方法の区分を図-1 に示す。Aは、BFS中に石こうを内割添加し、OPC量

表-1 モルタルの配合表

- 8		SO ₃	単位量(kg/m3)				
		(%)	W	OPC	BFS	CaSO ₄	S
N			225	450	(S=2)	-	1350
B20 -	А	2	225	360	87	3	1350
		5			82	8	
		8			78	12	
	В	2		357	90	3	
		5		352		8	
		8		348		12	
B50 -	А	2	225	225	217	8	1350
		5			206	19	
		8			194	31	
	В	2		217	225	8	
		5		206		19	
		8		194		31	
B70 -	А	2	225	135	304	11	1350
		5			288	27	
		8			272	43	
	В	2		124	315	11	
		5		108		27	
		8		92		43	
B85 -	А	2	225	68	369	13	1350
		5			350	33	
		8			330	52	
	В	2		54	383	13	
		5		35		33	
		8		15		52	

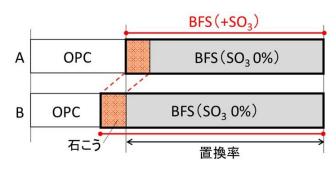


図-1 石こう添加方法

を一定とした. 一方 B は、BFS 中に石こうを外割添加 し、BFS 量を一定とした. 添加方法 A では石こうを添 加した場合に置換率の値が実際に混和される BFS 量と は異なるため、本来 BFS 量の増減により変化する硬化 体特性を評価できないと考え、その影響を添加方法 B で検討した.

2. 2 実施試験

(1) 圧縮強さ試験

恒温恒湿室(温度:20±1℃, 相対湿度:60±5%) に

キーワード 高炉スラグ微粉末,石こう,圧縮強さ,空隙率

連絡先 〒135-8548 東京都江東区豊洲 3-7-5 芝浦工業大学 土木工学科 TEL:03-5859-8356 E-mail:me20076@shibaura-it.ac.jp

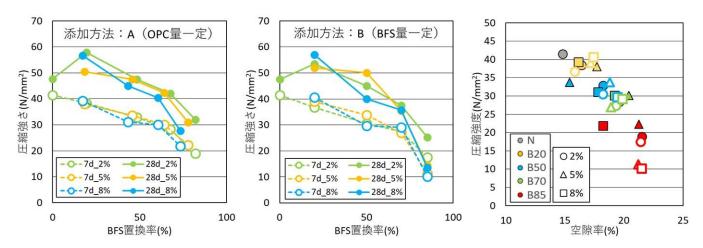


図-2 BFS 置換率と圧縮強さの関係 図-3 BFS 置換率と圧縮強さの関係 図-4 空隙率と圧縮強さの関係 (材齢7日:白塗り、材齢28日:中塗り) (A:中塗り、B:白塗り)

て 7, 28 日間封緘養生を施し, JIS R 5201 に準拠し試験 を実施した.

(2)空隙率試験

材齢 7 日で圧縮強さ試験を実施した供試体から 40×40×20mm 程度の破片を採取し、40℃の炉で乾燥処理 を行った. 乾燥質量を計測後, 真空飽水処理を施し飽水質量と水中質量を計測した. これらの値からアルキメデス法により空隙率を算出した.

3. 試験結果および考察

3. 1 BFS 置換率と圧縮強さの関係

図-2,3に7,28日養生におけるBFS置換率と圧縮強さの関係を示す。図-2より、材齢7日では全配合においてSO3添加率を変えることによる圧縮強さの変化は確認されず、SO3含有量の変化は圧縮強さに影響を及ぼさないと考えられる。材齢28日では材齢7日と比較するとB20においてSO3添加率の変化による差が大きくなったが、BFS置換率50%以上の配合においてはSO3添加率が変化することによる差が確認されなかった。

図-3は添加方法Bの場合におけるBFS置換率と圧縮強さの関係である.これより、SO3添加率の変化による圧縮強さの差が大きいことが確認されたが、このことから添加方法BがBFS量一定でOPC量を変化させた配合であるため、圧縮強さがOPC量に依存していると考えられる.しかし図-2、3を比較すると、BFS置換率70%程度までは添加方法A、Bでの大きな差はみられず、BFSに対して石こうを外割添加することが可能であると確認されたため、OPC使用量を大幅に減少させ、大きな環境負荷低減効果を得ることが可能であるといえる.

3.2 空隙率と圧縮強さの関係

図-4に空隙率と圧縮強さの関係を示す.これより,空隙率が大きくなるほど圧縮強さが小さくなる負の相関が確認された.この関係はセメント硬化体の特性として一般的に知られているものであり,このことから石こうを添加し SO₃ 含有量が増加した場合も圧縮強さと空隙率の関係が保たれることが確認された.

本検討では圧縮試験と空隙率試験を実施することに よる物性把握を目的としたが,実用化を考慮すると水 和物生成へ着目した検討が必要であると考えられる.

4. まとめ

- (1) BFS 置換率 70%程度までは SO₃ 含有量は圧縮強さ に大きく影響を与えないため、BFS 置換率を大き くした上で SO₃ を添加することが可能であり、そ れにより環境負荷の大幅低減が可能であると考え られる.
- (2) 空隙率と圧縮強さの負の相関は SO₃ 含有量が増加 した場合も保たれる.
- (3) 本研究は短期材齢での検討であったため、今後長期材齢での検討を行う必要があり、それにより実用化へ向けた考察が可能であると考えられる.

参考文献

- 二戸信和,大澤友宏,鯉渕清,宮澤伸吾:高炉セメントの発熱と収縮に及ぼすスラグ粉末度と SO₃の影響,コンクリート工学年次論文集,Vol.30, No.2,pp.121-126,2008
- 2) 和地正浩,米澤敏男,三井健郎,井上和政:高炉スラグ高含有セメントを用いたコンクリートの性質,コンクリート工学年次論文集,Vol.32,No.1,pp.485-490,2010