AEトモグラフィ法による地盤の進行性破壊評価手法の検討

日本大学	正会員	〇中村	勝哉	日本大学	正会員	小林	義和
日本大学	正会員	小田	憲一	日本大学	学生会員	池端	宏太

1. 背景·目的

地盤の安定性検討において,進行性破壊を考慮で きれば支持力の推定等の更なる精緻化が期待できる. しかし,進行性破壊の観測には課題があり,Digital Image Correlation method,または,X線によるCT技 術を応用した観測例¹⁾²⁾があるが,いずれの手法も地 盤内部で起こる破壊を進行過程が明瞭になる時間間 隔で把握することは容易ではない.

上記の課題を解決するため, Acoustic Emission(以 下,「AE」と称する.)という対象の微小な変形ま たは破壊により発生する弾性波を用いて,破壊の進 行過程を捉える試みが行われており,飽和土に対し て破壊の位置を標定した例³⁾がある.しかし,破壊 の把握にAEを用いた場合,対象の弾性波速度が等 方であると仮定しているため,対象の弾性波分布の 不均一性等の影響により,弾性波の屈折及び回折が 起こり,破壊位置の標定が困難な場合があった.本 稿では,破壊位置を標定する際に弾性波の屈折及び 回折を考慮するため,弾性波速度分布の不均一性を 考慮した破線追跡法とAE位置標定法をAEトモグ ラフィ法に組み込み,弾性波分布の不均一性を考慮 した手法を提案し,弾性波速度分布が異なるモデル を用いた数値実験より提案法の妥当性検討を行った.

2. AEを用いた破壊位置の標定

2.1 AEトモグラフィ法(提案法)

AE トモグラフィ法とは、対象に設置した AE セン サより得られた AE の受信時刻のみを用いて弾性波 分布を同定する手法である.また、その過程で AE の発生位置と時刻が求められるため破壊の進行過程 を可視化することが期待できる.

まず,AE 発生位置を標定するため、対象を任意の 大きさにセル分割し、各節点を AE 発生位置の候補 点とする.次いで、セルに初期弾性波速度を入力し、 候補点までの AE の発信時刻を求める.発信時刻P, センサ受信時刻A,理論走時T,センサ番号i,候補点 番号jとし発信時刻を求める式を式①に示す.

$$P_{ij} = A_i - T_{ij} \qquad \qquad \vec{\mathbf{x}} \ (1)$$

求められた発信時刻は,各候補点でセンサ数だけ 存在する.弾性波分布及び波線が解析対象と一致し ていれば,AE 発生位置を示す点で発信時刻の分散は 0となるが,解析結果が真値と完全に一致すること は難しいため分散が最小となる点を AE 発生位置と し,発信時刻は算定された時刻の平均とする.受信 時刻より得られた走時と理論走時には誤差があり, 受信時刻を用いた走時を基に同時反復法等の逆解析 により弾性波分布を更新する.また,AE 発生位置の 標定及び弾性波分布の更新を繰り返すことで求めら れた AE 発生位置を修正できる.なお,発信時刻の 算定に用いる理論走時は波線追跡法より求める.

2.2 波線追跡法

波線追跡法は,弾性波トモグラフィ法で用いられ る波の屈折及び回折を考慮する手法である.まず, セル内の弾性波速度より始点からいくつかの候補点 までの理論走時を算定する.セル内の弾性波速度は 一定と仮定しており,セル毎の弾性波速度の違いに より対象の弾性波分布を模擬できる.次いで,弾性 波を受信した候補点から他の候補点までの理論走時 を算定する.受信点において走時が既に算定されて いた場合,新たに算定された走時による受信時刻と 既知の受信時刻を比較し,早いものを採用する.上 述の手順を繰り返すことで,始点から候補点までの 走時及び波線を算定できる.

2.3 補間関数の適用

AE 発生位置を候補点から選ぶ場合,発生位置の標 定精度向上にはセル分割を細かくする必要がある が,セル数の増加に伴い弾性波速度更新に用いる逆 解析の変数も増加するため解が定まり辛くなる.ま た,その計算コストも高くなる.本稿では標定され た候補点での発信時刻の分散とその点から左右,上 下の4点の分散に対してラグランジェ補間等により 分散値の補間を実施し,補間関数の停留値を発生位 置とすることでセルの依存性を緩和させた.

キーワード 非破壊検査, Acoustic Emission, AE トモグラフィ法,進行性破壊,逆解析

連絡先 〒101-8308 日本大学理工学部 東京都千代田区神田駿河台 1-8-14 TEL:03-3259-0522 E-mail: nakamura.katsuya@nihon-u.ac.jp

3. 解析モデル

提案法の妥当性を検討するため、図―1 に示す弾 性波分布が一様でないモデルを用いて AE 発生位置 を標定した.図―1 に示すモデルは高速度領域 2000m/s と低速度領域 1000m/s に分けらており、縦 横 1.25m の解析領域に、センサを 4 隅、中央に計 5 個設置している.真の AE 発生位置は、解析領域内 にランダムに設置しており、この発生位置より入力 値となる受信時刻を決めている.また、セル分割に よる標定精度への影響を確認するため、スケールが 異なるセルで位置標定を実施した.CASE1,CASE2 ともに正方形のセルを用いており、1 辺の長さが CASE1 は 0.125m、セル数を 100 とし、CASE2 では 0.0625m、セル数を 400 とした.

4. 解析結果

表一1の条件より実施した位置標定結果を図—2 に示す. CASE1, CASE2 ともに標定された AE 発生位 置が真の位置を概ね近似した位置を示していること がわかる.また, AE 発生位置候補点と真の発生位置 が一致しない場合においても AE 発生位置の近似が 出来ているため,補完関数によるセル依存性の緩和 が適切に行われていることがわかる.真の位置から の平均誤差距離を確認すると CASE1 は 0.109m,

CASE2 では 0.0965m となりセルが細かい CASE2 の 評定精度が若干 CASE1 を上回っているが大きな差 がないことが分かる. セルを細分すると補完関数の 停留値が明確になるため位置標定精度が多少向上は するが,候補点の増加に伴う解析コストの増加を考 えると本解析モデルでは CASE2 と比較して CASE1 が適切なセル数であると考えられる. また,セル増 加による逆解析の変数の増加によって解が収束し辛 くなるため,セル数が少ない CASE1 が図―1 に示す 解析モデルの分割数として望ましいと考えられる.

5. まとめ

本稿では、提案法の妥当性を検討するため、弾性 波分布が一様でない解析モデルに対してスケールが 異なるセルで数値実験を実施した.その結果、提案 法は概ね良好な位置標定結果を示した.また、セル 依存性の緩和を目的とした補間関数の適用も適切に 機能していることが明らかになった.今後の検討と して、模型地盤より取得した実際の受信時刻を用い て提案法の妥当性を検討する.

表—1	解析冬母

	one side of the square (m)	number of cells	number of events					
CASE1	0.125	100						
CASE2	0.0625	400	40					

参考文献

- R. bhadari, W. Powrie, R. M. Harkness, A Digital Image-Based Deformation Measurement System for Triaxial Tests, Geotechnical Testing Journal, 2012, Vol. 35, Paper ID GTJ103821
- S. A. Hall, M. Bornert, J. Desruse, Y. Pannier, N. Lenoir, G. Viggiani, P. Be Suelle, Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation, Ge 'otechnique 60, 2010, No. 5, pp.315–322
- W. Lin, Use of Acoustic Emission to Evaluate Microscopic Mechanical Behavior of Sand in Triaxial Compression Test, 2018, The University of Tokyo, Ph.D. thesis