擁壁背後地盤の変形実験を対象とした DEM による大変形解析

早稲田大学	学生会員	○江崎	晃一
早稲田大学	フェロー会	員赤木	寬一

<u>1. はじめに</u>

近年の地震による大規模な地盤の崩壊は深刻な社会問題である.これらの災害リスクに効果的に対応する ためには、地盤崩壊後の定量的な評価技術の確立が不可欠である.そこで大規模な地盤崩壊問題に対し、変 形挙動を評価する手法として数値解析法が用いられている.本研究では、数値解析法として個別要素法(以 下,DEM)を採用し、大変形領域における DEM の適用性について検討している.ここでは、アルミ棒積層 体を用いた擁壁背後地盤の変形実験を対象に、DEM による数値解析を実施した.地盤内部におけるせん断ひ ずみを算出し、実験結果と比較することで大変形領域における個別要素法の適用可能性について検討した.

2. 実験装置および実験手順

擁壁実験装置は,高さ200(mm),幅10(mm),奥行き50(mm)の真鍮 製の剛体壁および,高さ200(mm),幅400(mm)の寸法で敷き詰められ ているアルミ棒積層体から構成される.擁壁部はハンドルにより主働 方向に水平変位が制御可能である.アルミ棒の寸法は,長さ50(mm)の 円形断面であり,直径1.6(mm)と3.0(mm)の2種類をそれぞれ質量比 2:1の割合で混合している.図-1に実験実施前の装置の状況を示す. 地盤内部におけるせん断ひずみの算出にあたり,本研究では,Particle Image Velocimetry(以下,PIV)解析¹⁾による変形解析を行っている.PIV 解析において,地盤の変形性状を精度良く追跡するためにアルミ棒の

断面を3色のペン(赤,青,黒)により着色することで視認 性を向上させている.地盤作製後,擁壁を主働方向に 2(mm/min)の速度で変位 60(mm)まで水平変位させるととも に,水平変位1(mm)間隔で変形状況をデジタルカメラにより 撮影する.取得した画像データを利用して PIV 解析を実施 し,読み取った座標から地盤内部の変位およびせん断ひずみ を算出する.

3. 解析条件および解析手順

表-1 に示す条件で解析を行った.解析時間を考慮し,積分時間間隔を設定した上で法線ばね定数の試計算を行った.せん断ばね定数については,法線ばね定数に対する低減率0.25

を導入して定めた.粘性減衰定数は,一自由度系の臨界減衰定数である 1.0 を採用した.ローカルダンピン グ,転がり摩擦係数については計算の安定性と収束性を考慮し,試計算を行って決定した.アルミ棒の粒子 間摩擦角については松岡ら²により 16°であることが示されている.既往の研究³で実験に使用するアルミ棒 の一面せん断試験を実施したところ,内部摩擦角が 23.5°となった.粒状体としての粒子間摩擦角は粒状体の 応力状態によって変化するパラメータであるので,本実験では粒子間摩擦角が 16°以上になると予想できる. 以上を考慮して解析時の粒子間摩擦角を 20°(摩擦係数 μ=0.36)と設定した.解析上の地盤作成方法について は空中落下法を用いて粒子を充填した.充填後に左側の壁を速さ 2(mm/s)で主働方向に変位 60(mm)まで平行 移動させ,解析後に可視化し,粒状体の挙動を確認した.また,あらかじめ地盤内部に標点粒子を縦横 10(mm) 間隔で設置し,標点粒子を追跡することで地盤内部の変位およびせん断ひずみを算出した.

4. 実験結果および解析結果の比較

実験結果と解析結果の変形図および最大せん断ひずみ分布図(累積,コンター幅 0~1)を図-2 に示す.図-2(a)の赤枠線は実験結果のアルミ棒積層体の外形線である.図-2(a),(b)より,変位 10(mm),20(mm)において 実験結果と解析結果がよく対応していることが分かる.また図-2(c),(d)より,実験と解析双方ですべり線の 発生が確認できる.一方,変位 40(mm),60(mm)では外形線右上部において,解析結果の外形が実験結果の外 形よりも小さくなっていることが分かる.ここで図-2(c),(d)の最大せん断ひずみ分布図の比較からこの原因

図-1. 変形前の擁壁とアルミ棒積層体

表-1. 数値解析における諸条件

	1 · · / 3 HE	> +
項目	単位	値
積分時間間隔 △t	S	0.000002
粒子密度 d	g/cm ³	2.7
法線ばね定数 kn	N/m	6500000
せん断ばね定数 k。	N/m	1625000
粘性減衰定数 h	-	1.00
ローカルダンピング α	-	0.02
摩擦係数μ	-	0.36
転がり摩擦係数 k,	-	0.5

を検討する.図-2(d)から,アルミ棒積層体右下部において変形は見られないが,図-2(c)では粒状体右下部で 実験よりも変形していることが分かる.実験では明確なすべり線の発生とともにアルミ棒積層体左上部の土 塊のみが移動するが,解析ではすべり線が発生するものの粒状体全体で移動する.粒状体全体が移動する原 因としては解析時の粒子充填で空中落下法を用いたことがあげられる.実験の地盤作成時は可能な限り隙間 なくアルミ棒を敷き詰めたが,空中落下法では粒子が実験時と比較して密に充填されない.擁壁の移動に伴 い解析側では体積収縮傾向となり粒状体右下部での変形が進行した.以上のことから変位が進行するにつれ て実験および解析の変形図において違いが見られた.

図-2. 実験と解析の変形図および最大せん断ひずみ分布図の比較

<u>5.まとめ</u>

本研究ではアルミ棒積層体を用いた擁壁背後地盤の変形実験において、大変形領域における実験結果と DEM を用いた解析結果の比較を行った.研究成果は以下の通りである.

1) 最大せん断ひずみ分布図より、実験と解析双方ですべり線の発生が確認できた.

2) 変位 10(mm), 20(mm)において実験結果と解析結果の変形図がよく対応した.一方,変位 40(mm),60(mm) では外形線右上部において解析結果の外形が実験結果の外形よりも小さくなった.これは,解析ではすべり 線が発生するものの粒状体全体で移動することによるものと考えられる.

今後の課題として、入力物性値の再検討を行うことで再現性の高い解析手法の確立を目指す.

<謝辞>本研究にあたり清水建設株式会社の桐山様に多大なご協力をいただいた.記して謝意を表する.

<参考文献>

1) 上野勝利, スレンソッキアン: 隣接基礎による砂地盤の変形と支持力, 土木学会応用力学論文集, Vol7, pp. 65-74, 2004.

2) 松岡元,斎木清志:2次元粒状体(丸棒)の粒子間摩擦角(φμ)の一測定法,第27回土質工学研究発表会, pp.579~580,1992.

3)藤井幹生,三浦丈典,中筋智之,赤木寛一,桐山貴俊:大変形領域に着目した擁壁背後地盤の変形挙動, 第12回地盤工学会関東支部発表会, pp.98~99, 2015.