E0344

人工衛星データを利用した東京湾内の水質解析

千葉工業大学創造工学部都市環境工学科 学生員 〇畑中 陸千葉工業大学創造工学部都市環境工学科 フェロー 矢内栄二

1. はじめに

東京湾は、沿岸域の急速な都市化や人口増加により 荒川や江戸川、多摩川など河川から栄養塩を含む排水 による流入が大きな負荷となっている.特に、夏季に おける赤潮の発生や貧酸素水塊の形成などが問題と なっており、水質把握のため経年的な定点調査を行っ ている.定点観測の場合、調査範囲が広範囲にわたる ため同日での水質の平面分布の把握は困難である.そ こで、リモートセンシング手法は平面分布の把握に優 れており、水質変動にも有効的である.矢内¹⁾らは人 工衛星 LANDSAT-5 号の衛星データを用いて水質解析 を行った.しかし、LANDSAT-5 号では階調数が 8bit で あり、現在使用されている LANDSAT-8 号の 16bit とは 異なることから、矢内らの解析式には適用できない.

本研究では、人工衛星 LANDSAT-8 号のデータを用 いて東京湾内の水質解析を行い、実測分布と比較検討 した.また LANDSAT-5 号の解析結果と比較した.

2. 解析領域

本研究では,夏季において水質汚濁が顕著にみられ る東京湾奥部に着目した.解析対象領域を図-1に示す.

3. 使用データ

解析には、LANDSAT-8 号の 2015/8/6AM10:15 に撮影 された BAND2~BAND7 の TM データを使用した.ま た以下の条件を満たすデータを用いた.

- ①東京湾に雲がかかっていないこと
- ②当日および前日に降雨の影響がない
- ③夏季に撮影されたもの

現地観測データとして東京都,千葉県,神奈川県の 2015年8月公共用水域水質結果²⁾を用いた.

4. 解析方法

4.1 解析ソフト

解析ソフトは、QGIS を使用した.

4.2 BAND の抽出

本研究では, LANDSAT-8 号の BAND 別デジタル値 を測定地点ごとに抽出した.

デジタル値には,画像ノイズを軽減するために9ピ クセルを選択しその平均値を BAND データとして用 いた.

4.3 対象水質項目

対象水質項目は, 矢内らと同様に COD, T-N, T-P に 着目した. 解析式には, LANDSAT-8 号の BAND デー

表-1 単相関表

	COD	T-N	T-P	BAND2	BAND3	BAND4	BAND5	BAND6	BAND7
COD	1.000								
T-N	0.462	1.000							
T-P	0.470	0.792	1.000						
BAND2	0.278	0.496	0.486	1.000					
BAND3	0.360	0.441	0.471	0.954	1.000				
BAND4	0.429	0.469	0.455	0.926	0.953	1.000			
BAND5	0.376	0.279	0.272	0.810	0.839	0.878	1.000		
BAND6	0.239	0.204	0.208	0.844	0.877	0.914	0.914	1.000	
BAND7	0.093	0.063	0.053	0.771	0.778	0.783	0.818	0.918	1.000

表-2 BANDの構成

BANDの数	BAND									
DANDUJ	COD	R	T-N	R	T-P	R				
1	4	0.429	2	0.496	2	0.486				
2	4,5	0.429	2,4	0.497	2,3	0.487				
3	3,4,5	0.457	2,3,4	0.522	2,3,4	0.487				
4	2,3,4,5	0.534	2,3,4,5.	0.587	2,3,4,5	0.554				
5	2,3,4,5,6	0.706	2,3,4,5,6.	0.753	2,3,4,5,6	0.708				
6	2,3,4,5,6,7	0.707	2,3,4,5,6,7	0.765	2,3,4,5,6,7	0.735				

結果 (b)COD 実測分布 図−2 COD 分布図

タと現地観測データの重回帰分析により式を算出した.対象水質項目と各 BAND の相関係数を表-1 に示す.

分析では BAND データを説明変数, 対象水質項目を 目的変数として解析式を算出した.

5. 解析結果

5.1 BAND の構成

解析式の BAND の構成は,表-1 に示した相関係数 を高い順に組み合わせ回帰分析を行い,最も相関の高 いものを解析式として算出した. BAND の構成を表-2 に示す.

5.2 水質予測式と相関係数

重回帰分析より算出した解析式と相関係数は以下 の通りとなった.

COD=0.00886×B4+0.00304×B5+0.00179×B3

-0.00708×B2-0.00757×B6-0.00133×B7+22.4939 (1) (R=0.707)

 $T\text{-}N\text{=}0.00272 \times B2\text{+}0.00302 \times B4\text{-}0.00136 \times B3$

-0.00023×B5-0.00251×B6-0.00133×B7-13.9818 (2) (R=0.765)

 $T\text{-}P\text{=}0.00017 \times B2 \text{+} 0.00006 \times B3 \text{+} 0.00017 \times B4$

+0.00001×B5-0.00017×B6-0.00018×B7-1.1672 (3) (R=0.735)

5.3 解析結果

(1) COD 解析結果と実測分布の比較

COD 解析結果と実測分布の比較を図-2に示す.

解析結果は、中央防波堤付近や羽田空港東の沖合に おいては約 5~6 mg/l の濃度が見られ、実測分布でも同 様の濃度分布が示されている. 荒川河口部では、8 mg/l の濃度が見られたが、実測分布では高濃度分布は見ら れなかった. 細かい差異は見られるが、全体的な傾向 はおおむね一致していることから、平面分布は再現で きていると考えられる.

(2) T-N 解析結果と実測分布の比較

T-N 解析結果と実測分布の比較を図-3 に示す.

解析結果は、芝浦と京浜運河付近において約2.0~3.0 mg/l の濃度が見られ、実測分布においても同様の濃度が示されている.羽田空港沖合では、実測分布で約3~3.5 mg/l の濃度が示されているが、解析結果において高濃度分布は見られなかった.全体的な傾向は一致しており、平面分布は再現できていると考えられる.

(3) T-P 解析結果と実測分布の比較

T-P 解析結果と実測分布の比較を図-4 に示す.

解析結果は、京浜運河付近や羽田空港周辺では 0.2~0.3 mg/lの濃度が見られ、実測分布においても同様 の濃度が示されていた.また羽田空港沖合では、解析 結果と実測分布ともに、共通して 0.2~0.25 mg/l の濃度 分布が示されている.荒川河口部では、0.4 mg/l の濃度 が見られたが、実測分布では高濃度分布は見られなか った.このように、全体的な傾向はおおむね一致して

(a) T-N 解析結果 (I 図-3 T-N 分布図

(b)T-N 実測分布

(a) T-P 解析結果 (b) T-P 実測分布 図-4 T-P 分布図

いることから,平面分布は再現できていると考えられる.

LANDSAT-5 号の解析結果¹⁾と比較すると,各水質 観測項目において荒川からの流入水の拡散が鮮明に 示されている.

6. まとめ

LANDSAT-8 号のデータを用いて算出した解析式よ り東京湾内の COD, T-N, T-P の水質解析を行い,実測 分布と比較した.その結果,全体的な傾向は一致して おり,水質平面分布はおおむね再現できていると考え られる.また LANDSAT-5 号と比較すると,河川から の流入水の広がりや河川河口部での濃度分布が鮮明 に示された.

参考文献

- 矢内栄二:人工衛星データを利用した東京湾内の 水質解析、リモートセンシングの応用・解析技 術、第5章1.3節、(株)エヌ・ティー・エス、pp.229-234,2019.
- 東京都環境局:www.kankyo.metro.toukyo.jp 千葉県庁:www.pref.chiba.lg.jp/index.html 神奈川県:www.pref.kanagawa.jp