機械学習を用いたレーザー超音波可視化試験 における非接触非破壊検査システムの開発

1. はじめに

近年,自動車等の機械材料・構造や社会基盤構造物に対 する品質保証や維持管理を目的に,非破壊検査の重要性が 高まっている.しかし,そのような中,非破壊検査の分野 では将来の検査技術者の人材不足の危機に直面している. 一方,ビッグデータ等,IT技術の発展は目覚ましく,様々 な業界で応用が進んでおり,中でも機械学習は,人間が行 う作業を機械に任せる点で大きな注目を集めている.そこ で,本研究では,レーザー超音波可視化試験において機械 に評価を行わせる検査システムの開発を行う.以下では, まずレーザー超音波可視化試験について説明する.次に, 得られた可視化試験結果へ施す画像解析手法や,機械学習 手法の1つである畳み込みニューラルネットワークおよび 構築システムの概要について説明する.最後に,構築した 非破壊検査システムを用いた欠陥検出結果を示し,今後の 課題等について述べる.

2. レーザー超音波可視化試験

まず、レーザー超音波可視化試験について説明する.レー ザー超音波可視化試験は、図1(a)のようなLUVE(Laser Ultrasonic Visualization Equipment)と呼ばれる計測装置を用 いて実施した.レーザー超音波可視化試験では、パルスレー ザーを、試験対象とする材料の表面に照射し、熱膨張を発 生させることで、超音波を伝搬させる.そして、予め設置 していた探触子で超音波を受信し、受信探触子から試験体 へ超音波が伝搬する様子を逆に可視化する.レーザー超音 波可視化試験の様子は図1(b)に示すとおりである.本研究 で扱うレーザー超音波可視化試験では、波動伝搬挙動の可 視化結果を連番画像として出力することができる.

図1 レーザー超音波可視化試験 (a) 計測装置 LUVE(Laser Ultrasonic Visualization Equipment) (b) 実際のレーザー超音波可 視化試験の様子.

〇群馬大学大学院理工学府	学生会員	伊藤司
群馬大学理工学部	学生会員	中村莱耶
群馬大学大学院理工学府	正会員	斎藤隆泰

3. 画像解析

可視化試験より得られた連番画像の番号が若いものから 順に画像処理を施す.まず,背景から散乱波を分離するた めに2値化処理を行う.本研究では、画像の2値化におけ る閾値処理は、閾値処理された白黒画素の級内分散を最小 にする Otsu 法¹⁾ を用いることとする.しかし,得られた 2 値化画像は散乱波が黒色,背景が白色で表現されている. よって, 散乱波を白色として画像処理を行うために白黒の 画素値を反転させる.また、ノイズを除去するためにモル フォロジー収縮演算を施す. モルフォロジー収縮演算とは, ある対象画素とその近傍画素を比較し、近傍画素の中で最 小の画素値を対象画素に割り当てる変換である.今回用い る構造化要素は5×5の正方形要素であり,要素の中心は正 方形の中心とした. さらに, 本研究では, モルフォロジー 収縮演算で除去できない大きさのノイズを除去するために エリアオープニングを行う. そして, 上記の方法によって 画像処理された連続する2枚の画像を合成し,画像間の位 置ずれから画素毎に局所変位場を算出する.各連結要素で の局所変位場の和を取り、その変位方向を波動の伝搬方向 とする.

4. 畳み込みニューラルネットワーク

本研究では、機械学習として、画像認識に特化して開発 されてきた畳み込みニューラルネットワーク (CNN: Convolutional Neural Network)²⁾を用いる. CNN は、入力層 (Input layer), 畳み込み層 (Convolutional layer), プーリン グ層 (Pooling layer), 全結合層 (Fully connected layer), 出 力層 (Output layer)等から構成され,畳み込み層とプーリ ング層を複数組み合わせることによって深い層を形成し, データの特徴を抽出・選択する.そして、上記の層に加え て、バッチ正規化層や ReLU(Rectified Liner Unit)層, ソフ トマックス層でネットワーク構造を形成する. バッチ正規 化層において学習を安定させ収束を早め、さらに ReLU 層 を定義することによって学習をスムーズに進行させる.ネッ トワーク構造の最後に、ソフトマックス活性化関数を用い て、全結合層の出力を正規化する.

5. システムの構築

本手法では,まず,レーザー超音波可視化試験より得ら れた連番画像に対して画像解析を行い,各時刻の波動の伝 搬方向ベクトルを求める.そして,波動の伝搬方向が反転

した画像に対して、学習済み CNN を用いて欠陥か否かを 判定する.ただし、本研究では、垂直下向きに入射波を入 射するため, 伝搬方向ベクトルが上向きになった時を散乱 波の発生とする。判定基準は、垂直上向きから左右各 15 度 以内の方向に向いた時とする.

CNN の畳み込み層ではゼロパディングを追加することに よって入力画像のサイズを保持したまま次の層に引き渡し, 畳み込み層を経る毎にフィルター数を倍に増加させ, 局所 パターンの緻密化を図る.最大プーリング層では、すべて の層でプーリング領域を2×2,入力画像上を走査するス テップサイズであるストライドを垂直方向走査と水平方向 走査ともに2回素に設定する.ネットワーク構造の学習に は、勾配降下法の最適化アルゴリズムである Adam(Adaptive moment estimation)³⁾を用いる.

欠陥検出結果 6.

5. 節で構築された手法を用いて鋼材中の欠陥検出を行う. 図2のように、1MHzの縦波探触子を直径2mmの欠陥(貫 通空洞)の真上に設置し、赤で囲まれた領域を可視化領域と してレーザー超音波可視化試験を行い、500枚の連番画像 を取得した.得られた試験結果に画像解析を施し, 伝搬方 向ベクトルが反転している画像に対して, CNN により欠陥 か否かを判定する. 学習データは, 同じくレーザー超音波 可視化試験より得られた様々な散乱波の画像を用いる. 学 習画像の欠陥か否かの判断は、著者らが視認できる範囲で 行い, 欠陥画像データ, 健全画像データに振り分ける. 得 られた画像は、学習の都合上、全て 250 × 250 にリサイズ し、また大量の学習データを作成するために健全画像デー タを 4550 枚, 欠陥画像データを 1630 枚に水増しした. そ して, データ数を揃えるために健全画像データからはラン ダムに 1630 枚を抽出した. 全学習データ 3260 枚のうち 9 割を CNN の学習に、1 割を学習した CNN の性能評価、つ まり検証に用いた.

また,本研究ではミニバッチ学習を行い,図3(a)に,CNN の学習回数に対する学習精度と検証精度を、図3(b)に、CNN の学習回数に対する学習損失と検証損失を示す.1エポッ クの学習回数は22回とし、それを5エポック繰り返した. 精度は全体の判定データ数に対する正しく判定されたデー タ数で表し,損失にはエントロピー損失関数を用いている. 図 3(a) より、学習を重ねる毎に学習精度は向上し、同様に 検証精度も向上していることがわかる. また, 図 3(b) より, 学習損失は減少し,検証損失も減少していることがわかる. したがって、過適合は起こっておらず、本 CNN は汎化性 能を獲得できているものと考えられる.

図4に欠陥検出結果を示す. 伝搬方向ベクトルが反転し た画像は 77 枚であり, 図 4(a) は, CNN が 77 枚の画像の 欠陥可能性を評価したものである。なお、可能性の評価は 事後確率を用いて百分率で表した.図4(b)は事後確率0.34 と評価された画像であり、図 4(c) は 0.94 と評価された画 像である.図4(b)より,散乱波が強く現れていると視認で きる画像に対しても,事後確率は低く算出される場合があ るとわかる.

図 3 CNN の精度と損失 (a) 学習回数に対する精度 (b) 学習回数 に対する損失.

図4 欠陥検出結果 (a) 欠陥の事後確率 (b) 事後確率 0.34 と判定さ れた散乱波画像 (c) 事後確率 0.94 と判定された散乱波画像.

おわりに 7.

レーザー超音波可視化試験より得られた結果に対して, 画像解析と CNN によって欠陥の有無を判定する非接触非 接触検査システムを開発した. 今後は, 得られた事後確率 に対する定量的評価と欠陥の種類を判定する手法への拡張 を行う.

参考文献

- 1) N. Otsu: A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, Vol.9, No.1, pp.62-66, 1979.
- 中山英樹: 深層畳み込みニューラルネットワークによる画像特 2) (製油出と転移学習,電子情報通信学会音声研究会, 2015.
 3) D. P. Kingma, J.Ba: Adam: A method for stochastic optimization.
- arXiv:1412.6980, 2014.