拘束圧が RC 版の押抜きせん断耐力に及ぼす影響とその解析的評価

防衛大学校	学生会冒	○板垣	墆	防衛大会
的闸八于仪	十工云貝	〇仮垣	ど町	の用八

防衛大学校	学生会員	佐藤	匡浩
防衛大学校	正会員	藤掛	一典

1. はじめに

鉄筋コンクリート(RC)版部材に落石のような比較 的重量のある剛な衝突体が低速度で衝突した場合に は,主に押抜きせん断破壊が問題になることが多い. したがって,RC版の耐衝撃性を向上させるためには, RC版の押抜きせん断耐力を大きくすることが有効 であると考える.一般に,コンクリートに拘束圧を 導入すると圧縮強度やじん性が向上することが知ら れている.そこで本研究では,図1のようにRC版に 拘束圧を導入することでRC版の押抜きせん断耐力 がどのような影響を受けるのかを実験と解析により 調べることにした.

2. RC版の押抜きせん断破壊実験

図 2 に実験で用いる RC 版試験体を示す. 試験 体は 1200×1200×120mm の寸法を有しており, 鉄筋 には D10 を使用した. コンクリートの一軸圧縮強度 は 40MPa, 鉄筋の降伏強度は 366MPa であった. 試験体に拘束圧を導入する場合には、図3に示す PC 鋼棒と加圧体から構成される加圧装置を用いた.実 験では、①無側圧(LP0)、②1 方向のみ(LP1)に H・ M・L レベルの側圧を導入, ③2 方向(LP2)に H・M・ L レベルの側圧を導入したパターンについて、それ ぞれ 2~3 ケース(S1~S3)ずつ行った. 導入拘束圧は 0、1.67MPa、4.44MPa及び 9.67MPa とした. 試験 体名は、1方向に高レベルの側圧を加えた1ケース 目の試験体の場合,LP1H S1 と呼称する.なお, RC 版の押抜きせん断実験では RC 版の中央で 150×150(mm)の正方形断面を有する鋼製載荷版を 介して載荷した.

3. RC版の非線形有限要素解析

RC版の押抜きせん断破壊挙動の解析には, RC部 材の解析で定評のある ATENA Ver.5.6 を用いた. コ ンクリートの構成モデルには 3D Nonlinear Cementitious 3 を用い, 既往の2 軸および3 軸圧縮 強度に整合するように各物性値を表 1 のように決定 するとともに回転ひび割れモデルを適用した.また, 鉄筋の構成モデルには弾塑性モデルを適用した.な お,解析では,載荷試験の対称性を考慮して図4に 示すように1/4の部分をモデル化するものとした.

図1 拘束圧を導入した RC 版の押抜きせん断試験

4. 実験及び解析的検討結果

(1)荷重 - 変位関係

図 5 に実験及び解析により得られた荷重 - 変位関 係の例を示す.これらから,実験結果と解析結果は概 ね一致することが分かる.また,拘束圧が大きくな ると押抜きせん断耐力は増加する傾向を示すことが 実験・解析結果ともに認められる.したがって,本 解析は,実験結果を再現できていると考えられる.

(2)有効拘束圧 - 押抜きせん断耐力関係

本研究では、次式で計算される面内 2 方向に作用 する拘束圧の平均値を有効拘束圧と定義する.

 $\sigma_{eff} = (\sigma_1 + \sigma_2)/2 \tag{1}$

ここで、 σ_{eff} =有効拘束圧、 σ_1 、 σ_2 =直交する面内 2 方向に作用する拘束圧である.よって、1 方向のみ に拘束圧を作用させた場合の有効拘束圧は、作用拘 束圧の 50%の値となる.

図 6 に有効拘束圧と押抜きせん断耐力の関係を示 す. この図から押抜きせん断耐力は有効拘束圧に比 例して増加することが分かる.

5. おわりに

- (1) RC 版に拘束圧を導入することにより押抜きせん 断耐力は大きくなる.
- (2) 押抜きせん断耐力と有効拘束圧の間には線形関係 が存在する.

物性項目	物性値
圧縮強度 _{f'。}	40MPa
弹性係数 Е.	30,011N/mm ²
ポアソン比 _v	0.2
引張強度 $_{f_t}$	2.906 MPa
引張強度の拡大係数 λt	1.376
偏心率e	0.5198
特性塑性ひずみ ε	8.00e-04
軟化曲線の勾配 t	2.67e-03
破壊エネルギー GF	79.2N/m

表-1 コンクリート構成モデルの物性値

図6 有効拘束圧-押抜きせん断耐力関係