地上レーザスキャナによる実大高架橋試験体の三次元計測

日本大学 学生会員 〇赤間 大樹 日本大学 正会員 仲村 成貴 荒巻 卓見 JFE エンジニアリング 正会員 瀬尾 高宏 水域ネットワーク 正会員 荒川 洋 大阪産業大学 正会員 久保寺貴彦

1. はじめに

近年の三次元データ計測技術の進展は目覚ましく, 実在構造物の形状を比較的精度良く把握できることが 報告されている¹⁾. インフラ施設の老朽化が進む中,三 次元データを活用して構造物の性能を把握できるよう になれば,これまでよりも効率的に維持管理に資する 資料が得られると考えられる.そこで本研究では,実大 規模の高架橋試験体を対象とした三次元データ計測を 実施し,得られた三次元データから数値解析モデルを 作成することで,対象試験体の力学特性を把握するこ とを目指す.まず本稿では,静的載荷実験²⁾および振動 実験³⁾を別途に実施した.実大高架橋試験体を対象とし て,レーザスキャナで三次元データを計測した結果に ついて報告する.

2. 対象試験体と現地計測の概要

本研究で対象とする実大高架橋試験体 2 体(試験体 A, B)を写真1に示す.高さは試験体 A で約1.6m,試験体 B で約3.4m,幅は両試験体とも2.6m である.厚 さは6~22mmの範囲で場所により異なる.

2.1 標定点の座標値観測

地上レーザスキャナでの計測に先立ち,地表と試験 体に標定点を設置した.図1に試験体周辺に設置した 地表標定点5点(S1~S5)の配置を示す.各地表標定点 の座標は,GNSS測量によってそれぞれ計測した.用い た主な測量器はトプコン社製のGB-3+GDDであり,測 量方法にはネットワーク型RTK測量を採用した.試験 体標定点として,両試験体にそれぞれ10箇所の試験体 標定点を設置した.試験体評定点の座標は,地表標定点 にTSを設置して計測した.用いた測量器はトプコン社 製のES-105Fである.地表標定点から試験体標定点ま での距離はいずれも15m以上であり,仕様上は地上レ ーザスキャナでの計測に支障が無いことを確認してい る.

写真1 試験体の全景 (A:左側, B:右側)

図1 地表標定点の配置

図2 レーザスキャナによる三次元点群モデル

2.2 地上レーザスキャナによる点群データ計測

地上レーザスキャナを地表標定点に順次設置する ことで、試験体AおよびBの周り360°からの点群デ ータを計測した.用いた測量器はトプコン社製の GLS-1500である.GNSS測量によって得られた座標値 をレーザスキャナに入力した後、4パターン点群デー タスキャン密度(2mm, 5mm, 10mm, 15mm)で順次 計測した.

3. 三次元モデル

地上レーザスキャナによる計測データから三次元モ デルの作成およびその後の処理には、Autodesk 社の Recap 2019 と Civil 3D 2019 を用いた. 一例として,点 群密度 2mm のデータを用いて作成した三次元点群モ デルを図 2 に示す. Civil 3D 2019 上で三次元点群モデ ルから試験体形状を抽出するにあたり、まず三次元点 群モデルにおいて自動的に面と認識された部分を手動 選択し、次に 2 つ以上の面が接する線を認識できた場 合は自動抽出した. 2 つ以上の面が接する線を認識で きない部分については手動で線を設定した. 得られた 三次元 CAD モデルを図 3 に示す. 同図には Civil 3D

キーワード レーザスキャナ,実大高架橋試験体,点群データ,三次元モデル 連絡先 〒101-8308 東京都千代田区神田駿河台 1-8-14 日本大学理工学部まちづくり工学科 E-mail:cshr15002@g.nihon-u.ac.jp 2019 で自動認識できた線を赤色,手動設定した線を青 色で示している.両試験体とも下面については一部の 側面で自動認識できた.なお,他の点群データ密度で計 測した結果についても同様に処理したが,点群密度 2mmの結果が最も良好に試験体形状を把握できた.

4. 三次元モデルの寸法測定結果

図 3 の三次元 CAD モデルにて部材寸法を Civil 3D 2019 上で計測した. 図 4 に組立図を示す. 組立図に記 載された寸法を正値とし, 三次元 CAD モデルでの計測 値と TS による試験体標定点の測定値,および正値との 相対誤差を表 1 に示す. 表中の丸囲み数字は図 4 に示 す組立図の数字に対応し,「-」は測定ができなかった ことを示す. また TLS は地上レーザスキャナによる測 定結果を示す. 相対誤差 1%未満で計測できた箇所が多 数あった. 相対誤差は試験体 A で最大 3.1%, 試験体 B では最大 29%と評価された箇所もあった. また, 表中の 赤色部分と青色部分は, 図 3 に示した線の色に対応さ せている. 自動認識できた赤色箇所であっても板厚の ように寸法が小さい部分(試験体 B の⑫)では, 正値 との相対誤差が非常に大きく評価された.

5. まとめ

実大高架橋試験体を対象としてレーザスキャナによ り三次元データを計測した結果,点群データ処理の過 程で手動作業を要したものの,試験体形状をある程度 把握できることを示した.対象試験体では,UAV やデ ジタルー眼レフカメラを用いて静止画像を撮影してお り,今後は SfM による結果についても検討する予定で ある.

表1 組立図との比較

(1)	試験体	A
-----	-----	---

(2) 試験体 B

位署	寸法(mm)		1)	差(r	nm)	相対誤差(%)		14 99	寸法(mm)		差(mm)		相対誤差(%)		
江區	組立図	TLS	TS	TLS	TS	TLS	TS	1立直	組立図	TLS	TS	TLS	TS	TLS	TS
1	2600	-	2604	-	-4	-	0.15	1	2600	2604	2603	-4	-3	0.15	0.12
2	2100	2092	-	8	-	0.38	-	2	2122	2124	-	-2	-	0.09	-
3	251	-	-	-	-	-	-	3	239	234	-	5	-	2.1	-
(4)	249	250	-	-1	-	0.40	-	(4)	239	246	-	-7	-	2.9	-
5	666	664	-	2	-	0.30	-	(5)	666	668	_	-2	_	0.3	_
6	1647	1654	-	-7	-	0.43	-	6	1295	1202		02	_	6.5	
0	980	971	-	9	-	0.92	-	0	1470	1517	_	0.0		0.0	_
8	657	674	-	-13	-	2.6	-	0	1470	1517	-	-47	-	3.2	_
9	221	224	212	-3	9	1.4	4.1	(8)	100	101	-	-1	-	1.0	-
(10)	867	857	-	10	-	1.2	-	9	3451	3415	-	36	-	1.0	-
(1)	2600	-	2597	-	3	-	0.15	10	667	668	-	-1	-	0.15	-
(12)	2100	2096	-	4	-	0.19	-	11	2784	2748	-	36	-	1.3	-
(13)	251	-	-	-	-	-	-	(12)	21		1	-6	-	29	-
(14)	249	251	-	-2	-	0.80	-	(13)	363	346	-	23	-	4.7	-
(15)	1000	1000	989	0	11	0.00	1.1	14	1401	1452	-	-51	-	3.6	-
16	1000	1001	988	1	12	0.10	1.2	(15)	2600	2609	2599	-9	1	0.35	0.04
U	/62	/57	-	5	-	0.66	-	(16)	2122	2128	-	-6	-	0.28	-
8	96	93	-	3	_	3.1	_	(17)	239	234	_	5	_	21	-
(19)	658	655	-	3	-	0.46	_	(18)	239	246	_	-7	_	2.9	-
									1000	1002	096	-1	14	0.2	1.4
									1000	1002	900	=2	14	0.2	1.4
								20	1000	1004	981	-4	19	0.4	1.9
								(21)	762	751	-	11	-	1.4	-
								(22)	667	668	-	-1	-	0.15	-
								23	96	83	-	13	-	14	-

図4 組立図

参考文献 1)久保寺貴彦,政晴尋志,里見裕己,河合純也:SfM と TLS による三次元建物モデルの TS に着目した精度の検証 と向上,土木学会論文集 F3(土木情報学), Vol.73, No.2, pp.II_1-II_6, 2017, 2)松原瑞希,仲村成貴,荒巻卓見,瀬尾高宏:静 的載荷実験と数値解析に基づく実大高架橋の力学特性把握, 第46回土木学会関東支部技術研究発表会(投稿中),3)鈴木: 振動計測に基づく実大高架橋試験体の損傷有無と振動特性, 第46回土木学会関東支部技術研究発表会(投稿中)