# 破壊力学に基づく損傷モデルによる 流体力を受けるコンクリート構造物の動的破壊解析

| 茨城大学 | 学生会員 | ○小沼 慎弥 | 正会員 | 車谷 麻緒 |
|------|------|--------|-----|-------|
| 中央大学 | 正会員  | 凌 国明   | 正会員 | 樫山 和男 |

# 1. はじめに

津波被害を低減するためには、津波が堤防に及ぼす 力学的影響を評価し、その堤防の破壊挙動を予測しな ければならない.そのためには、堤防の材料であるコン クリートの破壊を、ひび割れ進展まで考慮した動的解 析手法が必要である.また、堤防に作用する津波流体力 を直接的に評価するためには、津波と構造物を同一の 手法で解析することが望ましい.

既往の研究では、車谷らは破壊力学に基づいた損傷 モデルを有限要素法に組み込むことで、コンクリート の破壊挙動を高い精度で再現し、ひび割れ進展過程ま で可視化している.

そこで本研究では,流体および構造物の解析手法を 有限要素法で統一する.また,車谷らの損傷モデルを動 的解析に組み込むことで,津波流体力を受ける堤防の ひび割れ進展過程を再現する.

### 2. 自由表面流れ解析手法

流れの解析には, VOF 法に基づく自由表面流れ解析 を用いる. VOF 法は VOF 関数 Ø(液体:1,気体:0,界面 :0.5)と呼ばれるスカラー関数によって界面を表現する 手法である.

# 2.1 支配方程式

非圧縮性粘性流体の支配方程式は、次の Navier-Stokes 方程式と連続の式で表される.

$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u}\cdot\boldsymbol{\nabla}\boldsymbol{u} - \boldsymbol{b}\right) - \boldsymbol{\nabla}\cdot\boldsymbol{\sigma}(\boldsymbol{u}, \boldsymbol{p}) = 0 \quad , \quad \boldsymbol{\nabla}\cdot\boldsymbol{u} = 0 \tag{1}$$

ここで、 $\rho$ は密度、uは速度ベクトル、bは物体力ベクトル、pは圧力であり、応力テンソル $\sigma$ は次式で表される.

$$\boldsymbol{\sigma} = -p\boldsymbol{I} + \mu [\boldsymbol{\nabla} \boldsymbol{u} + (\boldsymbol{\nabla} \boldsymbol{u})^{\mathrm{T}}]$$
(2)

ここで, *I*は2階の単位テンソル, *μ*は粘性係数である.

自由表面流れにおいて界面の位置を表現する VOF 関 数φは,次に示す移流方程式によって支配される.

$$\frac{\partial \phi}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \phi = 0 \tag{3}$$

各節点における気体,液体の密度と粘性係数は VOF 関数を用いて次式のように求められる.

$$\rho = \rho_{\rm liq} \phi + \rho_{\rm gas} (1 - \phi), \quad \mu = \mu_{\rm liq} \phi + \mu_{\rm gas} (1 - \phi) \quad (4)$$

ここで $\rho_{gas}, \rho_{liq}, \mu_{gas}, \mu_{liq}$ はそれぞれ気体,液体の密度および粘性係数である.

### 2.2 支配方程式の離散化

非圧縮性粘性流体の支配方程式および移流方程式に 対する離散化において,空間方向に SUPG/PSPG (Streamline Upwind Petrov Galerkin/Pressure stabilizing Petrov Galerkin)法に基づく安定化有限要素法,時間方 向に Crank-Nicolson 法を適用する.

#### 3. 動的破壞解析手法

本研究では,動的解析手法に粘性を考慮せず慣性力 のみを考慮した非減衰動的解析を用いる.

# 3.1 破壊力学に基づく損傷モデル

車谷らが考案した損傷モデルを動的解析に組み込む ことで構造物の破壊挙動を再現する.損傷モデルの構 成式は次式で表される.

$$\boldsymbol{\sigma} = (1 - D)\boldsymbol{c} : \boldsymbol{\varepsilon} \tag{5}$$

ここで、 $\sigma$ は応力テンソル、cは弾性係数テンソル、 $\varepsilon$ は ひずみテンソル、Dは損傷度合いを表す損傷変数であ り、 $0 \sim 1$ の値をとる.損傷の判定には、ひずみテンソ ルをスカラー値へ変換した等価ひずみ  $\varepsilon_e$ を用いる.

等価ひずみは次式で表される.

$$\varepsilon_{\rm e} = \frac{k-1}{2k(1-2\nu)} I'_1 + \frac{1}{2k} \sqrt{\left(\frac{k-1}{1-2\nu}I'_1\right)^2 + \frac{12k}{(1+\nu)^2}J'_2} \tag{6}$$

ここで、vはポアソン比、kは引張圧縮強度比、 $I'_1$ はひずみテンソルの第1不変量、 $J'_2$ は偏差ひずみテンソルの第2不変量である.

変形履歴における等価ひずみの最大値を $\varepsilon_e \ge 0$ で表 すことにより,損傷変数 $D(\varepsilon_e)$ は次式で表される.

$$D(\varepsilon_{\rm e}) = 1 - \frac{\varepsilon_0}{\varepsilon_{\rm e}} \exp\left(-\frac{E\varepsilon_0 h_{\rm e}}{G_{\rm f}}(\varepsilon_{\rm e} - \varepsilon_0)\right)$$
(7)

ここで, E はヤング率,  $\varepsilon_0$  は破壊発生ひずみ,  $h_e$  は要素長さ,  $G_f$  は破壊エネルギーである.

#### 3.2 非減衰動的解析の支配方程式

運動中の弾性体の支配方程式は、つり合い方程式に、 単位体積当たりの慣性力を考慮した運動方程式で表さ れる.

$$\boldsymbol{\nabla}^{\mathrm{T}}\boldsymbol{\sigma}' + \boldsymbol{b} + \boldsymbol{B} = 0 \tag{8}$$

キーワード 動的破壊解析,損傷モデル,ひび割れ,有限要素法

連絡先 〒316-8511 茨城県日立市中成沢町 4-12-1 茨城大学工学部 TEL. 0294-38-5151 FAX. 0294-38-5268



ここで、 $\sigma'$ は応力ベクトル、bは物体力ベクトル、Bは 慣性力ベクトル、 $\nabla$ は変位に微分演算を行ってひずみを つくる行列である.運動中の弾性体の支配方程式に対 する離散化において、空間方向に有限要素法、時間方向 に Newmark's  $\beta$ 法( $\gamma = 1/2, \beta = 1/4$ )を適用する.

# 4. 津波流体力を受ける堤防の動的破壊解析

# 4.1 自由表面流れ解析モデルと解析条件

津波が堤防に衝突する状況を想定して、図-1 に示す ような、左端に水底から高さ 30m の水柱、水柱から 40m の位置に堤防を配置した 2 次元モデルを対象に自由表 面流れ解析を行った.解析条件として、液体と気体の密 度および粘性係数は 20 ℃における水と空気の値を用 い、解析時間 T は 4s、解析ステップは 400step とした. 有限要素として三角形要素を用い、節点数は 93133、要 素数は 184904 である.境界条件は、全壁面で slip 条件 (斜線部のみ nonslip 条件)を与えた.

# 4.2 動的破壊解析モデルと解析条件

堤防の寸法を図-2 に示す.この堤防が津波流体力を 受けた時の動的破壊解析を行う.堤防の材料であるコ ンクリートのパラメータを表-1 に示す.解析時間およ びステップ数は自由表面流れ解析と同様である.有限 要素として三角形要素を用い,節点数は 5318,要素数



は 10179 である.境界条件は,底辺を y 方向固定,右側 辺を x 方向固定とした.

### 4.3 解析結果

自由表面流れ解析結果を図-3 に示す.また,図-4 は 堤防の動的破壊解析結果であり,損傷係数を可視化す ることでひび割れの様子を示している.津波が堤防に 到達したことで破壊が発生し,進展していくため,津波 流体力の評価および津波流体力を受けた堤防のひび割 れ進展過程を再現することができた.

# 5. おわりに

本研究では,流体および構造物の解析手法に有限要 素法を用いることで,堤防に作用する津波流体力を直 接的に評価した.さらに,車谷らが考案した損傷モデル を動的解析に組み込むことで,津波流体力を受けたコ ンクリート堤防のひび割れ進展過程を再現した.今後 は,ひび割れ進展の妥当性について比較,検討を行う必 要がある.また,より現実的な解析を行うため,3次元 問題へ拡張していく予定である.

# 参考文献

- 車谷麻緒,寺田賢二郎,加藤準治,京谷孝史,樫山和男: コンクリートの破壊力学に基づく等方性損傷モデルの 定式化とその性能評価,日本計算工学会論文集, Vol.2013,pp.20130015,2013.
- 田中聖三, Fangtao Sun, 堀宗朗, 市村強, Maddegedara
   L.L. Wijerathne:動的津波解析による構造物の破壊解析の基礎研究, 土木学会論文集 A1(構造・地震工学), Vol.69,No.4(地震工学論文集第 32 巻),I 903-I 908,2013