MPIを用いた建物の倒壊を考慮した津波解析手法の構築

1.	は	Ů	め	に
	101	-		-

2011 年に発生した東北地方太平洋沖地震に伴う津波に よって,沿岸部は甚大な被害を受け多くの人命が失われた. この災害によって,津波による被害を事前に予測すること の重要性が再認識された.一般的に遡上域における津波解 析では,土地利用及び構造物の影響を考慮することについ ては,マニングの粗度係数を変えることによって行ってき た.しかし,従来の手法では建物の影響及び倒壊について 考慮することは困難であった.

著者らは,有限要素法を用いた建物倒壊を考慮した津波 解析手法の有効性については検討されているが,実地形を 対象とする場合,建物を精度よく再現するには細かいメッ シュを用いる必要がある.また,メッシュ数に比例して計 算コストも膨大となるため大規模な解析を行うためには並 列計算の導入が必要不可欠である.

本研究では, MPI に基づく並列化を行った上で, 建物の 倒壊を考慮した津波解析手法と従来の建物の影響をマニン グの粗度係数で表現する手法との解析結果について定量的 な比較を行った.

2. 解析手法及び並列化について

図-1 に解析フローチャートを示す.

(1) 支配方程式

支配方程式には,以下に示す非線形性と分散性を考慮した Boussinesq 方程式(非線形分散波方程式)を用いる.

$$\frac{\partial \mathbf{U}}{\partial t} + \mathbf{A}_i \frac{\partial \mathbf{U}}{\partial \mathbf{x}_i} - \frac{\partial}{\partial \mathbf{x}_i} \left(\mathbf{N}_{ij} \frac{\partial \mathbf{U}}{\partial \mathbf{x}_j} \right) \\ = \frac{\partial^2}{\partial t \partial \mathbf{x}_i} \left(\mathbf{K} \right) + \mathbf{R} - \mathbf{G} \mathbf{U}$$
(1)

ここで,Uは未知数ベクトルであり, A_i ,K,R, N_{ij} ,Gはそれぞれ移流項,分散項,水底勾配項,拡散項,摩擦項に対する行列である.

(2) 解析手法

空間方向の離散化には SUPG 法に基づく安定化有限要 素法¹⁾を,時間方向の離散化として,2次精度を有する Crank-Nicolson 法を用い,連立一次方程式の解法には, Element-By-Element 処理による Bi-CG STAB 法を用い る.移動境界手法,流体力評価手法,及び建物倒壊手法の 詳細は参考文献²⁾を参照されたい.

(3) 並列化

KeyWords :

並列計算にはノード間の情報交換をメッセージ通信で行う MPI³⁾を用いた.逐次計算のプログラムをノード間の通

津波, 並列計算, 建物倒壊, 安定化有限要素法

図-2 陸域に複数の建物を有する津波遡上問題

信を考慮して並列計算プログラムに書き換えることによっ て並列化を行った.

3. 複数構造物を有する津波解析例

図-2 に示す解析モデルを用いて本手法と建物の影響をマ ニングの粗度係数で表す手法においてそれぞれ解析を行い 本手法の妥当性を検証する.解析モデルは沖合に仮想段波 を発生させ,陸域に遡上させるものである.また,陸域に は 36 棟の建物が存在する.初期水位は 5.0m と 2.0m のパ

図-3 解析領域の分割図

ターンの解析を行い,両手法の解析結果の比較を行う.

(1) 解析条件

図-3 に解析領域の分割の様子を示す.解析領域はフリーのソフトウェアである METIS⁴⁾を用いて16 分割した.建物の倒壊の判定は,建物に作用する流体力がその建物の抗力値を超えた場合に倒壊と判定する.建物の抗力値は既往の研究⁵⁾を参考にしている.建物は木造と仮定し,抗力値は 38.0kN/m とする.建物の形状は全て10m × 10m の正方形とし,4.0m 間隔に配置している.また,建物群の間隔は 20.0m としている.境界条件として解析領域境界には slip条件,建物の境界には no-slip条件を与えている.マニングの粗度係数は既往の研究⁶⁾を参考にし,海域は 0.025 m^{-1/3}・s,陸域は 0.020m^{-1/3}・s,建物領域は 0.080m^{-1/3}・s としている.時間増分量は 0.01 秒とし,解析時間は 50 秒としている.また,本論文では建物倒壊時に増加させる流体密度の移流は考慮していない.

(2) 解析結果

図-4 に初期水位が 5.0m のパターンの 30 秒時点の解析結 果を,図-5 に初期水位が 2.0m のパターンの 50 秒時点の解 析結果を示す.図の上段が本手法における解析結果,下段

が建物の影響をマニングの粗度係数で表現する手法の解析 結果である.図-4より建物が倒壊する場合には,両手法に 差異は見られなかった.図-5より,建物が倒壊しない場合 には,両手法の浸水域の解析結果に明確な差異が表れるこ とが分かる.

4. おわりに

並列化された本手法とマニングの粗度係数によって建物 を考慮する手法における津波遡上域の解析結果を比較し, 以下の結論を得た.

本手法は,建物が倒壊する場合には,建物の影響をマニン グの粗度係数で表現する手法と比較して両手法に大きな差 異は表れなかった.一方で,建物が倒壊しない場合には,津 波浸水域の時間的変化に大きな差異が表れた.よって簡便 な手法ではあるが,本手法は従来の手法に比べて,建物の影 響を正確に考慮できる手法であることが確認できた.また, 並列化した場合でも,逐次計算と同様の結果が得られた.

今後の課題として,断層を含む沖合の領域も含めた解析 領域に対し本手法を適用していくことなどが挙げられる.

参考文献

- 1) 日本計算工学会:第3版 有限要素法による流れのシミュレー ション, 丸善出版株式会社, 2017.
- 利根川大介,樫山和男:安定化有限要素法による非線形分散波 理論に基づいた津波遡上解析手法の構築研究,応用力学論文 集,12,pp127-134,2009.
- 3) 日本計算工学会:並列計算法入門, 丸善株式会社, 2003.
- Karypis, G. and Kamur, V. :Multilevel k-way partitioning scheme for irregular graphs, J. Parallel and Distributed Computing, 48. No.1, pp 96-129, 1998.
- 5) 飯塚秀則,松富英夫:津波氾濫流の被害想定,海岸工学論文 集,47,pp. 381-385,2000.
- 6) 小谷美佐,今村文彦,首藤伸夫:「GIS を利用した津波遡上計 算と被害推定法」海岸工学論文集,45, pp.356-360,1998.