16 elements (1mm pitch)

時間反転波を用いたL字型CFRP中の 欠陥検出方法の検討

○群馬大学大学院理工学府学生会員 前原 佑 群馬大学大学院理工学府 正会員 斎藤隆泰

1. はじめに

近年、炭素繊維強化プラスチック (CFRP:Carbon Fiber Reinforced Plastic)の,航空宇宙,土木・建設分野等への応用が 進められている、今後、単なる薄板としての構造に留まらず、 L字型等の様々な形状に加工した上での利用が検討されて いる. CFRP は、軽量で高強度、耐腐食性の性質を示す一方 で、その積層構造が原因で、音響異方性を示し、力学特性が 複雑であることが知られている. 例えばL字型 CFRP では、 成形・加工時の外部圧力状態や、接着不良が原因で、L字型 の屈曲部分において層間剥離が生じる可能性が指摘されて いる.しかしながら,屈曲部分に存在する層間剥離に,従来 の超音波探傷試験を適用する場合、CFRP の強い音響異方 性が原因で、欠陥からの散乱波の挙動は極めて複雑となり、 検査精度の低下を招く危険性がある.このような中,著者ら は、2次元問題を対象に、L字型 CFRP 中の欠陥検出方法に ついて時間反転波を用いた検討を行ってきた.1) 本研究で は、その成果の一部を3次元問題へと拡張する、以下では、 解くべき問題等について簡単に説明し、数値解析例を示す ことで、本手法の有効性について検討する.

2. 解くべき問題

図1のようなL字型形状のCFRPを考える.本解析で対象とする元々のCFRPは、繊維方向が一方向に配向された 一方向CFRPとし、それをL字形状に屈曲させたものである.図1(b)のL字型CFRP中の灰色曲線は、繊維の配向方向を示す.欠陥は、図1(a)中の赤枠で示し、厚さ1.92mm、奥行10.2mmの空洞に見立てている.L字型CFRPに設置したフェーズドアレイ探触子(素子数:16点)より、超音波の送受信を想定し、欠陥検出を行う.なお、アレイ素子からの超音波は簡単のため、点波源でモデル化している.

3. 時間反転法

時間反転法²⁾は,弾性波伝搬の時間に対する可逆性を利 用したものである.欠陥の位置ベクトルを r_0 ,散乱波の受 信点の位置ベクトルをrとする.時刻 t_0 ,位置 r_0 で発生 した欠陥からの散乱波が,時刻t,受信点rで計測されると き,その応答はグリーン関数 $G(r_0, t_0 | r, t)$ を用いて表す ことができる.ここで,時間に対する可逆性より,グリーン 関数は,

$$G(\boldsymbol{r}_0, t_0 \mid \boldsymbol{r}, t) = G(\boldsymbol{r}_0, t \mid \boldsymbol{r}, t_0)$$
(1)

図2 時間反転法の概念図(a)欠陥からの散乱波をアレイ素子で受信(b)アレイ素子から時間反転波を再送信.

と表すことができる.アレイ素子の総数を*M*とすると,欠 陥を散乱源 (ソース点)と考えた時の*i*番目の散乱波の受信 点 (*i* = 1,...,*M*)で観測される波動は次のように表される.

$$h_i(\boldsymbol{r}_0, t) = \int_{S_i} G(\boldsymbol{r}_0, t_0 \mid \boldsymbol{r}, t) d\boldsymbol{r}$$
(2)

ここで, *S_i* は散乱波受信領域である.式(2)で示した波動 を,図 2(b)のように計測時間*T*で時間反転させ,対象材料 に再送信する.散乱源における波動は次のような畳み込み で表される.

$$h_i^D(\mathbf{r}_0, t, T) = h_i(\mathbf{r}_0, t) * h_i(\mathbf{r}_0, T - t)$$
(3)

アレイ素子は *M* 個あるから, それぞれの寄与を重ね合わせると, *M*

$$P(\mathbf{r}_{0}, t, T) = \sum_{i=1}^{M} h_{i}^{D}(\mathbf{r}_{0}, t, T)$$
(4)

となる.時間反転波をそれぞれの受信点から送信すれば,

時刻 T後には r_0 の位置で P が最大値をとる. すなわち,時間反転法は,時間反転波の収束位置から欠陥位置を特定する方法である. ここでは,有限要素法を用いて,欠陥からの散乱波 $h_i(r_0,t)$ を取得し,時間反転させることで式(4)の Pを解析的に求める.

4. 有限要素法を用いた異方性弾性波動解析

三次元異方性弾性波動問題を考える. 弾性波変位 *u_i*(*x*,*t*) は位置 *x*, 時刻 *t* において, 物体力を無視すると, それぞれ 次の運動方程式と構成式を満足する.

$$\sigma_{ij,j}(\boldsymbol{x},t) =
ho \ddot{u}_i(\boldsymbol{x},t)$$
 (運動方程式) (5)

$$\sigma_{ij}(\boldsymbol{x},t) = C_{ijkl} u_{l,k}(\boldsymbol{x},t) \qquad ({\mbox{\texttt{\texttt{H}}}} {\mbox{\texttt{\texttt{R}}}} {\mbox{\texttt{\texttt{I}}}}) \tag{6}$$

ここで, $\sigma_{ij}(\boldsymbol{x},t)$ は応力, ρ は異方性材料の密度, [],i は空間 微分を, [] は時間に関する微分を表す.また, C_{ijkl} は弾性定 数を表す.ただし, 弾性定数 C_{ijkl} は, 実際にはフォークト標 記された弾性定数 $c_{\alpha\beta}$ を用いると便利である.変位 $u_i(\boldsymbol{x},t)$ を求める数値解析手法には Galerkin 法を用いたボクセル有 限要素法 (FEM) を用いる. 陽解法で解くために, 式 (5) の運 動方程式に式 (6) の構成式を代入し, 空間・時間方向の離散 化をすると, 次の式を得る.

$$\{u_i\}_{n+1} = -\left[(\Delta t^2 [M]^{-1} [K] + 2[E] \right] \{u_i\}_n - \{u_i\}_{n-1} + (\Delta t)^2 [M]^{-1} \{T_i\}$$
 (7)

ここで, [K] は全体剛性マトリクス, $\{u_i\}$ は節点変位ベクト ル, [M] は全体質量マトリクス, $\{T_i\}$ は表面力ベクトル, Δt は時間増分, [E] は単位行列である. 式 (7) に初期条件を代入 し, 逐次的に解くことで第 n ステップにおける変位 $\{u_i\}_n$ を得ることができる.

5. L 字屈曲部のモデル化

CFRPの音響異方性は、CFRP中の繊維の配向に依存する. そのため CFRPの屈曲部分のモデル化には繊維方向に応じ た弾性定数を求める必要がある.ここで,屈曲部分の繊維方 向は図 1(b)中の灰色曲線で示すように,連続的に変化する と考えれば,弾性定数の変化も連続であると考えられる.そ こで,弾性定数を図 1(b)における鉛直領域からの角度θの 関数で導出し,屈曲角に対応した各有限要素に振り分ける ことで,屈曲部分の音響異方性を適切に評価する.これらの 詳細については,文献¹⁾等を参照されたい.

6. 数值解析例

以下,数値解析例を示す.まず,計測実験の代わりに, 数値解析を用いて欠陥からの散乱波を求める (順解析). L 字型 CFRP を有限要素数 1723425 個のボクセル要素 で離散化し,時間増分 Δt は Δt =0.1(ns) とした.ここ で, CFRP の密度は ρ =1600(kg/m³), 鉛直領域の弾性定 数を c_{11} =16.34, c_{12} =3.72, c_{13} =4.96, c_{22} =155.43, c_{23} =3.72,

2200step

2720step 図 3 各ステップにおける逆解析結果 |*u*|.

c₃₃=16.34, c₄₄=7.48, c₅₅=3.37, c₆₆=7.48(単位は GPa) で与 えた.入射波は,超音波フェーズドアレイ探触子の左端より 8 点目のアレイ素子から,中心周波数 500kHz の Ricker 波 を 1 波,図 1(b)の黄色点線で示すように,垂直に与えた.全 アレイ素子で欠陥からの散乱波を受信し,時間反転波を各 アレイ素子で再入射する (逆解析). 逆解析結果を図 3 に示 す.ここで,識別がしやすいよう,欠陥位置を白枠で示して ある.図 3 の 2200step より,時間反転波は欠陥近傍で収束 し,欠陥位置を概ね特定できていることがわかる.

7. 結論および今後の課題

本研究では、L字型 CFRP 中の欠陥に対して、時間反転波 を用いた3次元逆解析結果を示した.有限要素法によって、 L字型 CFRP 中に存在する欠陥からの散乱波を取得し、得 られた散乱波を時間反転させ再入射することで、概ね欠陥 を検出することができた.このことから、本手法は、音響異 方性の性質が変化する材料に対して有用性があると言える. 今後は、高精度化や実際の計測波形を用いた場合の妥当性 について検討する予定である.

参考文献

- 前原佑,斎藤隆泰:時間反転法を用いたL字型CFRP中の欠 陥形状再構成,計算数理工学論文集, Vol.18, pp.47-52, 2018.
- K. Kimoto, K. Nakahata and T. Saitoh: An elastodynamic computational time-reversal method for shape reconstruction of traction-free scatterers, *Wave Motion*, Vol.72, pp.23-40, 2017.