# 非定常電気泳動試験による各種コンクリートの塩化物イオン拡散係数の評価

| 東洋大学   | 学生会員   |    | ○高橋 | 詩 康太 | 、黛  | 桃子 |     |
|--------|--------|----|-----|------|-----|----|-----|
|        | フェロー会員 |    |     |      |     | 福雪 | 戶 勤 |
| 東亜建設工業 | 正会員    | 小林 | 雄一, | 田中   | 亮一, | 網野 | 貴彦  |

#### 1. 背景·目的

塩害の照査では、コンクリートの塩化物イオン拡散 係数が必要となる.その取得には、定常状態における電 気泳動試験(JSCE-G 571)や、浸せき試験(JSCE-G 572) による方法があるが、数日間で迅速に塩化物イオンの 拡散係数を取得する方法として、近年では、非定常によ る電気泳動試験(以下、非定常電気泳動試験)の適用性 も検討されている<sup>1), 2)</sup>.

そこで本検討では、各種材料・配合のコンクリートに 対し、非定常電気泳動試験を実施して求めた塩化物イ オン拡散係数について考察した。

#### 2. 実験概要

## 2. 1. 供試体

検討したコンクリートは, **表**-1 に示す6種類である. 供試体は, φ100×200mmの円柱供試体を材齢27日間 標準養生した後に, 図-1 に示すように切り出したφ 100×50mmの2つのスライス片とした.なお,AWCは JSCE-F 504 に従い水中打設した供試体を用いた.

### 2. 2. 非定常電気泳動試験

電気泳動セルは JSGE-G 571 に準拠したものを用いた. 試験は温度 20±2℃, 湿度 60%の恒温恒湿室にて実施し た. なお前処理として,スライス片を材齢 27 日に真空 飽和処理した後,翌日に電気泳動セルにセットし,非定 常電気泳動試験を開始した.本実験では,通電時間を 6 時間および 24 時間とし,印加電圧は配合ごとに表-1 に 示すものとした.なお,通電中の溶液温度の上昇量は最 大でも 3.4℃であった.

塩化物イオン浸透深さは、通電後のスライス片の割 裂面に硝酸銀溶液(0.1mol/L)を噴霧し、白色に呈色 した部分を図-2に示すように7箇所で測定し、その平 均値を塩化物イオン浸透深さとした.

## 2.3. 塩化物イオン拡散係数の算出

表-1 配合表

|                                               | W/B                                      | 単位量(kg/m3) |     |           |          |          |     | பிறைய |         |  |
|-----------------------------------------------|------------------------------------------|------------|-----|-----------|----------|----------|-----|-------|---------|--|
| 記号                                            |                                          | w          | В   |           |          |          | c   | G     | [17]加电江 |  |
|                                               |                                          |            | С   | BFS       | SF       | FA       | 3   | u     | (1)     |  |
| OPC                                           | 0.40                                     | 170        | 425 | -         | -        | -        | 727 | 1001  | 25      |  |
| OPCM                                          | OPCをウェットスクリーニング                          |            |     |           |          |          |     | 20    |         |  |
| SCC                                           | 0.40                                     | 170        | 425 | -         | -        | -        | 911 | 810   | 25      |  |
| AWC                                           | 0.40                                     | 220        | 550 | -         | -        | -        | 599 | 933   | 25      |  |
| FA                                            | 0.40                                     | 170        | 361 | -         | -        | 64 (15%) | 706 | 1001  | 20      |  |
| BFS                                           | 0.40                                     | 170        | 234 | 191 (45%) | -        | -        | 713 | 1001  | 35      |  |
| SF                                            | 0.40                                     | 170        | 382 | _         | 43 (10%) | -        | 711 | 1001  | 40      |  |
| ※OPC:普通コンクリート,SCC:高流動コンクリート,AWC:水中不分離性コンクリート, |                                          |            |     |           |          |          |     |       |         |  |
| FA:フライアッシュ混合コンクリート,BFS:高炉スラグ微粉末混合コンクリート,      |                                          |            |     |           |          |          |     |       |         |  |
| SF:シ!                                         | SF:シリカフューム混合コンクリート.()内の%は各混和材の結合材に占める質量% |            |     |           |          |          |     |       |         |  |



図−1 非定常電気泳動試験に供したスライス片



図-2 塩化物イオン浸透深さの測定法

非定常状態の塩化物イオン拡散係数の算出は,文献 2)を参考に式(1)を用いて算出した.

$$D_{nssm} = \frac{RT}{zFE}K$$
(1)

ただし, *D<sub>nssm</sub>*: 非定常電気泳動試験から得られる塩 化物イオン拡散係数(m<sup>2</sup>/s), *R*: 気体定数

(=8.31J/(K・mol)), T:試験開始時と終了時における
陽極側と陰極側の溶液温度(K)の平均値, z:塩化物
イオンの電荷(=1), F:ファラデー定数(=9.65×10<sup>4</sup>
J/(V/mol)), E:電位勾配(試験開始時と終了時における
る両溶液間の電圧の平均値を試験片の厚さで除した
値)(V/m), K:塩化物イオン浸透速度係数(m/s)
(式(2)参照)を表す.

キーワード 港湾コンクリート構造物 塩害 塩化物イオン拡散係数 非定常電気泳動試験 連絡先 〒350-8585 埼玉県川越市鯨井 2100 東洋大学 理工学部 都市環境デザイン学科 TEL. 049-239-1300 ただし, X<sub>d,6h</sub>, X<sub>d,24h</sub>: 通電 6 時間および 24 時間後の 塩化物イオン浸透深さを表す.

#### 3. 実験結果·考察

図-3 に通電時間と塩化物イオン浸透深さの関係を, 図-4 に算出した塩化物イオン拡散係数 *D<sub>nssm</sub>を示す*.

OPCM および SCC の D<sub>nssm</sub> は, OPC に比べ若干大き かった.これは、粗骨材量が影響していると考えられる. また, OPC と AWC を比較すると, 同一水セメント比に もかかわらず AWC のほうが D<sub>nssm</sub> は大きかった.これ は,水中打設によるセメントの流出が影響した可能性 があるが、本検討ではAWCの気中打設供試体を作製し ていなかったため、今後気中打設の結果と比較検討す る必要がある.BFS, FA および SF の D<sub>nssm</sub>は, OPC よ り小さかった.これは、潜在水硬性やポゾラン反応、マ イクロフィラー効果による細孔構造の緻密化の効果と 考えられる.また,結合材の種類に比べ粗骨材量が塩化 物イオン拡散係数に及ぼす影響は小さいと推察される. なお、混和材を用いたコンクリートは、材齢が経過する と遮塩性能が向上することが知られている 2). 今回は材 齢28日の結果であるため、今後、長期材齢による試験 を実施し、検証する予定である.

土木学会 2013 年制定コンクリート標準示方書(維持 管理編)の式(3),(4),(5)より算出した見掛けの拡散係 数 *D*<sub>ap</sub> と *D*<sub>nssm</sub>の比較を図-5 に示す.

・OPC の場合  $\log_{10} D_{ap} = 3.0(W/C) - 1.8$  (3) ・BFS, SF の場合  $\log_{10} D_{ap} = 3.2(W/C) - 2.4$  (4)

・FA の場合  $\log_{10} D_{ap} = 3.0(W/C) - 1.9$  (5)

ただし, *D*<sub>ap</sub>:塩化物イオン拡散係数の特性値(cm<sup>2</sup>/年), *W/C*:水セメント比を表す.

**図-5**より,材齢28日時点での*D<sub>nssm</sub>とD<sub>ap</sub>*の相関が 確認された.ただし,前述のとおり長期材齢の*D<sub>nssm</sub>と*の比較が必要と考えられる.

# 4. まとめ

非定常電気泳動試験により, コンクリートの粗骨材 量の違いや,水中打設に伴うセメントの流失等の品質 の影響,さらには混和材使用による遮塩効果を定量的 に評価できる可能性があることがわかった.また,今回 の実験の範囲では,示方書に準じて計算される見掛け の拡散係数 *Dap* と *Dnssm* は良好な相関関係が認められた.



通電時間と塩化物イオン浸透深さの関係

18 塩化物イオン拡散係数(×10-1<sup>2</sup>m/s) 16 14 12 10 8 6 4 2 0 OPC OPCM SCC AWC FA BFS SF 図-4 塩化物イオン拡散係数 D<sub>nssm</sub> 0.30 0.25



### 参考文献

図-3

 NT BUILD 492 : Concrete, Mortar and Cement-based Repair Materials: Chloride Migration Coefficient from Non-steady-state Migration Experiments, Nordtest, Finland,1999.

2) 中村英佑,皆川浩,宮本慎太郎,久田真,古賀裕久, 渡辺博志:通電後の塩化物イオン浸透深さを用いたコ ンクリートの遮塩性の評価,土木学会論文集 E2(材料・ コンクリート構造), Vol.72,No.3,304-322,2016.