海洋環境下に約20年間暴露した再生コンクリート製消波ブロックの耐久性に関する検討

東洋大学	学生会員	○伊藤史弥, 山口寛人
	フェロー	福手勤
東急建設株式会社	正会員	伊藤正憲,早川健司,鈴木将充
港湾空港技術研究所	正会員	山路徹,与那嶺一秀

1. 背景・目的

低品質の再生骨材を用いたコンクリートの港湾にお ける適用では、旧モルタル分の増加の影響による塩化 物イオン浸透抵抗性の低下など、耐久性に懸念がある. 現状では、低品質の再生骨材を用いたコンクリートの 海洋環境下における長期耐久性に関する知見は少ない.

そこで本検討では、低品質の再生骨材を用いたコン クリート製消波ブロックの暴露試験¹⁾の、約20年目に おける長期耐久性について検討した。

2. 実験概要

2. 1 試験体

(1)試験体

試験体は 0.46t 型の消波ブロックである. 試験体の骨 材情報を表-1, コンクリート配合を表-2 に示す. セメ ントは普通ポルトランドセメントを用いた. 骨材には 普通骨材および再生骨材を用いた. 原コンクリートは 東京都江戸川区の再生骨材製造工場に各種解体現場か ら持ち込まれたコンクリートガラである. JIS 規格にお ける再生細骨材 L 相当および再生粗骨材 M 相当を用い た. 普通骨材を用いる場合は W/C を 55%とし, 再生骨 材を用いる場合はコンクリートの強度低下を考慮して W/C を 50%とした.

(2)暴露環境·期間

試験体は海上大気中(A)と,3時間の海水散布と9時間の乾燥を繰り返す飛沫帯を模擬した環境(S)に,NC55およびRC50を1体ずつ,計4体設置した.暴露期間は19.3年間であるが,1.9年間の散水停止期間を含む.

2. 2 試験項目

消波ブロック上部から図-1 に示すようにコアを採取 し、以下の試験を行なった.

(1) 圧縮強度

試験は JIS A 1107 に準拠し、切断後のコア No.2~

表-1 骨材情報

	記号	粗粒率	表乾密度 (g/cm²)	吸水率 (%)	実積率 (%)	洗い損失量 ^(%)	産地および品質	
普通細骨材	NS	2.71	2.61	1.74	I	1.70	千葉県木更津産山砂	
普通粗骨材	NG	6.68	2.70	0.33	60.0	0.27	北海道上磯町産砕石	
再生細骨材	RS	2.88	2.25	12.28	68.4	2.80	再生細骨材L相当	
再生粗骨材	RG	6.56	2.50	4.86	62.3	0.81	再生粗骨材M相当	

表-2 コンクリート配合										
먑	セメントの	骨材の種類		W/C	s/a	単位量(kg/m³)				豆骨加四
記万	種類	S	G	(%)	(%)	W	С	S	G	茶路刑间
NC55	普通	NS	NG	55	43	158	288	786	1094	10.2年
RC50	ドセメント	RS	RG	50	43	168	336	655	975	19.34

図−1 試験体外観およびコア採取箇所

No.4 を対象に行った.

(2) 超音波伝播速度

試験は NDIS2426-1:2009 に準拠して行った. 切断 前のコアを対象に表面から距離 50mm までは 5mm, それ以降は 20mm 間隔で計測した.

(3) 中性化試験

試験は JIS A 1152 に準拠し, No.1 のコア側面にフ ェノールフタレイン溶液を噴霧し, 測定した.

(4)空隙率

空隙率は試験体の絶乾重量,表乾重量,表乾状態の試 料の体積および水の密度を用いて算出した.

(5)塩化物イオン濃度

試験は JIS A 1154 に準拠し、表面からの距離 5mm

キーワード 再生コンクリート 海洋環境 長期暴露試験 消波ブロック 耐久性

連絡先 〒350-8585 埼玉県川越市鯨井 2100 東洋大学 理工学部 都市環境デザイン学科 TEL. 049-239-1300

~95mm まで 10mm 幅で 9 深度測定した.

3. 実験結果·考察

(1) 圧縮強度および超音波伝播速度

圧縮強度の経時変化を図-2に示す.ただし,材齢1~ 5年の結果は同配合の他の供試体²⁾から得た.再生コン クリートは W/C が 5%低いものの,圧縮強度は普通コ ンクリートより低くなった.飛沫帯においても経時に よる強度低下は見られなかった.

図-3 は、コア No.2~4 の圧縮強度を、図-4 は超音波 伝搬速度の分布を示したものである.内部における圧 縮強度の低下は見られず、超音波伝搬速度も表層と内 部において変化は見られないことから、劣化が最も起 こりやすいと考えられるコンクリート表層部において も、劣化はなかったと考えられる.

(2)中性化試験

いずれにおいても中性化深さは 0mm であった.

(3)空隙率

普通骨材を使用した場合には 13%, 再生骨材を用い た場合には 22.5%および 25%であった. これは, 再生 骨材に付着した原コンクリートのモルタルの影響と考 えられる.

(4) 塩化物イオン濃度

図-5 に塩化物イオン濃度分布を示す.再生コンクリートは普通コンクリートに比べ塩化物イオン濃度が高い結果となった.また,飛沫帯における見かけの拡散係数は,NC55(S)は 0.68cm²/年,RC50(S)は 0.99cm²/年となり,W/Cを5%低くしているのにもかかわらず,再生コンクリートの方が見かけの拡散係数が大きかった.

4. まとめ

海洋環境下に暴露した,低品質の再生骨材を使用し たコンクリートの長期耐久性について得られた知見を 以下に示す.

- (1) 普通コンクリートと比べ圧縮強度は低いものの, 経時による低下はみられなかった.
- (2) 経時による表層部分の劣化はみられなかった.
- (3) 普通コンクリートに比べ見かけの拡散係数が大きく, 遮塩性に劣ると考えられる.

参考文献

 伊藤正憲,福手勤,田中淳,山路徹:海洋環境下に おける再生コンクリートの適用性に関する研究,港 湾技術研究所,VOL.37, NO.4, 1998 年 12 月,

pp.149~171.

 コンクリート工学年次論文集:早川健司、山路徹、 濱田秀則、伊藤正憲:海洋環境下に暴露した再生コ ンクリートの強度特性、VOL.23、NO.1、2001年、 pp.165~270.