埼玉大学	学生会員	○伏見	健吾
埼玉大学大学院	学生会員	五十嵐	善哉
埼玉大学大学院(兼)埼玉大学研究機構レジリエント社会研究センター	正会員	田中	規夫

1.研究背景と目的

近代改修以前の荒川では、およそ 10 年に 1 回の頻度 で破堤を伴う水害を受ける地域が存在した.近代改修 においては、水害常襲地帯である吉見町や川島町の堤 防を高くしたが、その代わりに河道内での貯留効果を 高める横堤群を設置し、下流に影響が出ないような治 水対策がとられた.また、荒川上流部改修に加え、荒 川放水路事業により流下能力は大きく改善され、近年 は破堤を伴う大規模水害は、荒川の国土交通省管理区 間では発生していない.洪水被害のリスクは減少して いると考えられるが、その一方で、他の流域における 水害では、昔の地形が影響していることがしばしば報 告されている.整備方針レベルの洪水が発生した場合 に、近代改修以前の氾濫リスク箇所にはどの程度のリ スクが残っているのか、また、新たにリスク箇所がど こに生じるかを明らかにすることは重要である.

そこで本研究では,確率規模 1/200 で降雨特性の異 なる 3 波形を対象として,荒川流域における潜在的な 氾濫リスク箇所および氾濫タイミングが降雨特性でど のように変化するのかを解明することを目的とする.

2. 洪水氾濫解析モデルの概要

荒川流域を対象として,河川内の水位と堤内地の氾 濫流を一体的に解析が可能な洪水氾濫解析モデルを河 口まで拡張した.なお支配方程式は,田中ら¹⁾と同様 のものを用いた.

地盤高は計算領域全域において 5 m メッシュの LP データを 50 m メッシュに平均化処理を行い作成した. また,河川内は横断面図をもとに,平均河床高まで掘 り下げた.川幅が 50 m 以下になるような内水河川は, 空隙率を用いて再現した.領域内の粗度係数は,国土 地理院の細密数値情報(10 m メッシュ土地利用)を参 考に土地利用分類ごとの粗度係数を使用した.現況の 堤防を再現するのに、地盤高での再現は困難なため、 阻害線を設定し堤防を再現した.河川堤防のほかに現 存している控堤(相上堤、横手堤、大工町堤、桜堤、 縦土堤、霞堤、長楽堤)も同様に阻害線として設定し た.控堤の高さは、現地調査で現存状況を確認し設定 した.破堤幅は、「氾濫シミュレーションマニュアル (案)」²⁾を参考に川幅の関数で与えた.しかし、控堤 には参考にする川幅がないため、2015 年関東東北豪雨 における高さ 3 m 程度の茨城県管理河川の決壊幅を参 考に、一律で 20 mとした.破堤条件は HWL破堤とし た.ただし、堤防高が約 1 m と低い大工町堤、荒川第 一調節地の越流堤、堤防の分岐・合流部は、破堤しな いものとした.また、荒川上流部(80.0 km~83.0 km) 付近では HWL よりも低くなっている箇所があるため、 築堤部は越流破堤とした.

3. 解析モデルの境界条件と初期条件

(1) 河川上流に与える流量ハイドロの設定

本モデルは、平面二次元計算で河川流と氾濫流を一 体的に解析するものである.そのため、計算領域の内 部に境界条件を設定する必要がある.境界条件として、 河川の上流部では水位観測所の位置から下流方向のみ に流出するようなプールを設置し、水位ハイドロを与 えた(図-1).ただし、市野川に関して小見野水位観測 所ではなく、やや上流の 10.6 km 地点にプールを設定 した.小見野水位観測所に設置した場合には、氾濫域 に影響を与える可能性があったためである.また、同 様の理由で和田吉野川のプールも台地に設置した.

プールサイズは解析に大きな影響は与えなかったが, 安定した条件を与えるため川幅より大きくした. 荒川 河川事務所の実績降雨データをもとに,貯留関数計算 を行い各プール位置の流量ハイドロを決定した. 各プ ール出口における流量とプール内水位の水位流量曲線

キーワード 氾濫解析, 荒川流域, 降雨分布, 破堤リスク箇所, 破堤タイミング

連絡先〒338-8570 埼玉県さいたま市桜区下大久保 255 埼玉大学 TEL048-858-3564 E-mail: tanaka01@mail.saitama-

第45回土木学会関東支部技術研究発表会

図-1 モデルの全体構造 (プールの設置場所)

を作成し,氾濫解析ではその流量ハイドロになるよう に,プール内水位を設定した.

(2) 河口における水位ハイドロの設定

各波形での東京湾の潮位が入手できなかったため、大 潮かつ台風が接近している際の潮位とした.この条件 を満たすものが 2016 年 9 月台風 16 号での東京湾の潮 位であり、この潮位になる水位を一律で設定した.

(3) 3つの降雨分布の特性

本川流量が大きい本川型の場合には、支川 でピーク 流量に達するのが遅く、支川合流部付近では本川によ るバックウォーターの影響をより強く受けると考えら れる.一方で、支川での流量が大きい支川型の場合、 本川 でピーク流量に達するのが遅く、支川と本川合流 部では支川のピーク流量が大きい.また、ピーク流量 のタイミングが本川と支川で大きく異なると考えられ る.これらの理由から、本研究では異なる降雨分布を 対象として解析を行った.解析では過去の荒川流域の 降雨のうち本川・支川ともにピーク流量が大きい本川 支川型(昭和 22 年 9 月型)、支川のピーク流量が大き い支川型(平成 11 年 8 月型)、本川でのピーク流量の 大きい本川型(平成 19 年 9 月型)を用いた(図-2). ここで、各降雨で与えた本川、支川のピーク流量

(Q_{max} [m³/s]) および,本川のピーク流量時刻を基準とした支川のピーク流量時刻の差 (Δt [hr]) を表-1 に示す.
 各プール内の初期水位は解析開始時間(図-2 の Timeが 0)での流量になる水位を河川の定常状態になるまで助走計算を行った.

4. 結果及び考察

図-2 流量ハイドログラフ(a) 昭和 22 年 9 月型(1/200), (b)平成 11 年 8 月型(1/200), (c) 平成 19 年 9 月型(1/200)

(1) 氾濫解析モデルの検証

深谷市の洪水ハザードマップでは,1/200 の降雨で 本田地区の浸水深が2.0~5.0 m である.また,過去の 事例として平成19年9月台風9号,平成29年台風21 号では背後地盤までそれぞれ0.5 m,1 m のところまで 水位が上がった.一方,平成29年台風21号で,和田 吉野川,都幾川では一部氾濫が見られるなど,降水量 が多い際の危険箇所となっている.

本解析においても、本田地区での溢水が確認できた. この時の最大浸水深は 1.7 m であった.また、和田吉 野川で最初の浸水を確認できた.実績降雨での検証は されていたが、整備方針レベルのような大規模な降雨 に関しても、概ね正しい計算であることを確認した.

(2) 各波形における破堤リスク箇所とタイミング

図-3 に各波形での破堤地点と明治 43 年に実際に破 堤した地点を示す. 荒川の堤防が破堤した地点は M (Main),支川の堤防が破堤した地点は B (Branch),控 提が破堤した地点は S (Second embankment)にそれぞれ 数字を付して示す. また,(d)の青[©]は解析結果と近い 付近での既往破堤点を表す. 表-2 に各破堤地点の最初 に破堤した時刻とピーク時間のとの差[hr],破堤箇所 数,合計の破堤幅[m]を示す.破堤が起きなかった地点 は○で示した.図-4 には,各波形の流量ハイドログラ フに表-2 の破堤時刻を示す.

a) 各波形における破堤リスク箇所の相違

本川支川型(a)のみ,破堤地点 B10, B11, B12 で破堤 が見られた.この3地点は支川(高麗川,越辺川,都 幾川)の上流部に位置しているため,本川からのバッ クウォーターの影響ではないと考える.また,本川支 川型は3波形の中で最も支川(高麗川,越辺川,都幾 川)の流量が大きいことから,降雨分布の違いからで はなく,流量の違いが要因といえる.同様に,M3の 破堤も流量の違いが要因である.これは,本川の流量 も3波形の中で最大であり,かつ狭窄部の上流であり 水位が高くなりやすいためである.

その一方で,破堤地点 M2 では降雨分布の違いが破 堤の要因と考える.この地点は,荒川本川と和田吉野 川の合流の上流部に位置しており,バックウォーター の影響を受けやすい.支川型(b)では,バックウォータ ーの影響を受けにくいため破堤しなかったが,本川支 川型(a),本川型(c)では破堤している.また,和田吉野 川の流量の大きい本川支川型の方が破堤幅は大きい.

明治 43 年には、川島町の南東の入間川と荒川本川 の合流地域で破堤が多く確認されているが、氾濫解析 では破堤が起こらなかった.これは、合流部に背割堤 が整備され合流部でバックウォーターの影響を受けに くくした効果といえる.破堤幅に関しては、流量に比 例し大きくなるほど、破堤幅も長くなっている.これ らのことから、破堤地点の有無、破堤幅の長さは降雨 分布の違いよりも支川、本川に流れる流量の違いが大 きく影響している.

b) 各波形における破堤タイミングの相違

表-1 各降雨で与えたピーク流量および本川(植松

橋)と支川のピーク流量時刻の差

	S22型		H11型		H19型	
	(本川支川型)		(支川型)		(本川型)	
	Qmax Δt		Q _{max}	Δt	Q _{max}	Δt
	[m ³ /s]	[hour]	[m ³ /s]	[hour]	[m ³ /s]	[hour]
1:植松橋	6550.1	0	5688.1	0	7829.6	0
2:和田吉野川上流端	680.8	0	294.4	-9	209.7	3
3:市野川上流端	1099.6	-1	681.6	-5	587.3	0
4:野本	2154.6	2	1366.9	1	1247.9	-2
5:入西	1188.9	0	707.3	-5	590.3	1
6:坂戸	1238.5	1	764.4	-4	754.2	2
7:安藤川上流端	140.8	-1	89.9	-5	83.9	0
8:八幡橋	372.2	-1	286.3	-13	263.9	0
9:小ヶ谷	1975.9	-1	1440.2	-7	1519.6	-1

図-3 破堤地点(a):昭和 22 年 9 月型, (b):平成 11 年 8 月型, (c):平成 19 年 9 月型, (d):明治 43 年での破堤箇所

破堤時刻は,降雨分布によって大きく異なった.支 川型(b)では、支川上流部で、早い段階で破堤してい る.これは、早い段階で流量が大きくなっているため である.その後、支川型では本川のピーク時刻 3 時間 前付近から支川の中流部で破堤が生じ、ピーク直前か ら本川が破堤している.比べて本川型(c)では、支川型 と同様に支川上流部で初めに破堤しているが、破堤時 刻は遅くなっている.その後、本川のピーク前後で多 くの地点の破堤が生じている.本川型の特徴として、 破堤地点 S2 の破堤が遅くなっている.これは、和田 吉野川の流量が小さいことや、M2 での破堤があり、 そこからの流出が多く、破堤地点 S2 であまり流出し なかったためである.

表-2 破堤地点の詳細

			1.1.1.1.1						
	破堤時刻[hr]			破堤個数			合計破堤幅[m]		
	S22	H11	H19	S22	H11	H19	S22	H11	H19
M1	-0.84	0.05	-2.85	1	1	1	300	300	300
M2	-0.57	0	-1.75	1	0	1	600	0	150
M3	0	0	-0.66	0	0	1	0	0	350
B1	-19.15	-26.18	-6.77	4	2	3	1150	1000	800
B2	-2.53	-1.9	-4.95	1	1	1	1250	1000	1650
B3	-14.27	-14.33	-7.3	7	9	9	3950	2400	2300
B4	2.11	2.37	-0.17	1	1	1	150	150	150
B5	-3.21	-2.6	-2.06	1	1	2	200	50	300
B6	-1.7	-6.1	-3.79	1	1	1	150	50	50
B7	-3.35	-8.66	-2.27	1	1	1	50	50	50
B8	-4.24	-18.45	-2.33	1	1	1	50	50	50
B9	11.24	0	4.66	1	0	2	200	0	400
B10	0.55	0	0	1	0	0	300	0	0
B11	-2.29	0	0	1	0	0	50	0	0
B12	-0.64	0	0	1	0	0	50	0	0
S1	-17.15	-24.15	-4.82	1	1	1	700	700	700
S2	0.15	-0.81	11.83	1	2	1	350	300	50
S3	4.45	6.49	1.72	1	1	1	1300	1200	1300
S4	3.6	4.99	1.14	1	1	1	550	550	550
S5	0.03	0.8	-2.18	4	6	3	1850	1500	1950
S6	-0.25	0.79	0.29	4	1	5	2250	1150	2350
S7	0.28	0	-0.51	3	0	3	800	0	750

5. 結論

本研究で検討した 3 つの異なる降雨分布について,本 川型,本川支川型では支川(特に和田吉野川)との合 流部でバックウォーターの影響による破堤点が確認さ れた.ただし,支川の上流部では支川のピーク流量に より破堤点に差異が生じた.破堤タイミングについて は,本川型では本川ピーク前後で支川,本川の堤防が 短時間で破堤する.一方で,支川型は本川のピーク流 量までに支川から徐々に破堤が生じる.

謝辞

本研究の実施にあたり,国土交通省関東地方整備局荒 川上流河川事務所に河川横断などの資料を提供頂いた. また,河川財団の平成 29 年度河川基金研究助成(代 表・田中規夫)を使用した.記して謝意を表します.

参考文献

 田中 規夫,五十嵐 善哉,伏見 健吾:荒川中流域の 潜在的氾濫リスクと現存する江戸時代の旧堤防群が 果たす減災効果,土木学会論文集 B1(水工学) Vol.74, No.4,2018(印刷中)

図-4 破堤のタイミング(M:本川堤防、B:支川堤 防、S:控堤)(a):昭和22年9月型,(b):平成11年8 月型,(c):平成19年9月型

- 2)栗城稔,末次忠司,海野仁,田中義人,小林裕明:
 氾濫シミュレーション・マニュアル(案)ーシミュレーションの手引き及び新モデルの検証ー,土研資料,3400号,1996.
- 3)八木澤順治,大窪和明,田中規夫,赤崎佑太,奈良 優:埼玉県川島町を対象とした洪水氾濫解析に基づ く避難支援バスの最適運行経路の検討,土木学会論 文集 B1(水工学) Vol.73, No.4, I-313 - I-318, 2017.
- 4)赤崎裕太,田中規夫:荒川支川群に囲まれた川島町の内水氾濫の有無による氾濫特性の変化,平成29年度土木学会全国大会第72回年次学術講演会,Ⅱ-016,pp.31-32,2017.