デジタル画像相関法によるコンクリート供試体のひずみとひび割れの計測精度に関する検討

茨城大学 学生会員 〇橋口和哉 茨城大学 学生会員 邊見哲一 茨城大学 学生会員 小圷祐輔 茨城大学 正会員 車谷麻緒

1. はじめに

コンクリートは、セメント・細骨材・粗骨材から成る 複合材料であるため破壊進展の段階で複雑にひび割れが 発生・進展していく、コンクリートのひび割れは構造物 の力学性能や耐久性に影響を及ぼすため、コンクリート の破壊過程を解明することが重要な課題となっている.

コンクリートの破壊過程の変形を計測する方法として、 ひずみゲージによる接触式の計測方法がある.ひずみゲ ージから得られるひずみ値は貼付した箇所のみであるた め、ひび割れが複雑に進展していくコンクリートの破壊 進展を追跡することは困難である.そこで近年、非接触 で部材全域のひずみ計測が可能な計測方法として画像解 析手法が注目されている.画像解析における、コンクリ ートのひずみ計測の精度の高さは、画像解析においてひ び割れを定量化したときの妥当性を示すための重要な指 標となる.加えて、画像解析手法は様々な解析条件の設 定があるため、解析条件の違いが精度に与える影響を知 ることも重要である.

既往の研究として、畝田ら¹は画像相関法を用いて解 析条件の違いによるひずみ測定の精度検証を行っている. しかしこの研究では、様々な解析条件による精度検証を 行っているが、試験体が均一材料である金属片であり、 不均一材料で複雑な破壊進展を辿るコンクリートの検討 は行われていない.内野ら²は画像相関法を使用してモ ルタルの圧縮試験におけるひずみゲージと画像解析で得 られたひずみの整合性を示したが、解析条件の違いによ る精度の検討は行われていない.このように、様々な解 析条件の違いにおいてコンクリートを対象にしてひずみ 計測の精度を検証している研究は少ない.

そこで本研究では、コンクリートの圧縮試験を対象に、 画像解析によるひずみの精度検証、およびひび割れ進展 計測に対する画像解析の最適な解析条件の調査を行う.

2. 画像解析

本研究では車谷らの研究³に基づき,直接相互相関法 を用いて画像解析を行う.直接相互相関法は,画像を検

図-3 コンクリート供試体の荷重-変位関係 査領域と呼ばれる小領域に分割し,異なる2時刻の画像 の間で,領域内の輝度値パターンの相関を相関関数によ り求め,変位量を算出する方法である.この手法により 得られた変位量からBマトリックスを用いてひずみを求 め,最大主ひずみの分布によりひび割れを可視化する.

3. コンクリート供試体の圧縮試験

3.1 試験概要

コンクリート供試体の寸法を図-1に示す. コンクリートの配合は、単位セメント量を383 kg/m³、単位水量を160 kg/m³、水セメント比を41.8%としている.供試体の撮影面には、画像解析を行う際に輝度値分布のランダム性を強めるために、試験前に赤と黒のアクリルスプレーを塗布した.そして、供試体の裏面には、ひずみゲージを図-1で示すように供試体中央に貼付した.画像解析で使用する画像は、デジタルカメラ Nikon D5500(2410 万画素)で撮影している.画像の撮影速度は、2秒間に1枚とし、載荷速度は3 kN/min とした.

3.2 画像解析条件

画像解析で用いるひずみの値は、図-2に赤い正方形で 示すようにひずみゲージ貼付位置と重なる撮影面中央の 12点のグリッドの平均値である.これは、検査領域400 pixelの場合を示しており、検査領域の大きさを変化させ ても測定グリッドの位置がずれないように、測定グリッ

キーワード コンクリート,画像解析,圧縮試験,直接相互相関法

連絡先 〒316-8511 茨城県日立市中成沢町 4-12-1 茨城大学工学部 TEL. 0294-38-5151 FAX. 0294-38-5268

検査領域の大きさによる影響の検討は、検査領域は大 きくすると、輝度値パターンの移動を特定しやすくなる ため、ひずみの計測精度が向上すると考えられる.ここ では、検査領域を100,200,400 pixelの3パターンについ て検討する.

検査領域の重複の有無による影響の検討は、検査領域 を小さくすることなく、測定グリッドの解像度を高くす るために、検査領域を半領域重複させる方法がある.こ こでは検査領域200 pixelでの検査領域の重複の有無(以 降、検査領域を重複させていないものをfem、重複させた ものをfcm)について検討する.

4. ひずみの精度検証

コンクリート供試体の圧縮試験を対象に,画像解析で 得られるひずみの精度検証を行う.図-3に荷重-変位関 係を示す.図中の○はひずみの精度検証に使用した画像, □は最大主ひずみの分布によりひび割れの可視化に使用 した画像の荷重変位位置を示している.

ひずみゲージから得たひずみと画像解析から求めたひ ずみとの相関を、検査領域の大小に関して比較した結果 を図-4に、検査領域の重複の有無に関して比較した結果 を図-5に示す.結果から検査領域が大きいほどひずみ計 測の精度が高いことが分かる.検査領域の重複の有無に 関しては、精度の違いは見られなかったが、どちらも高 い精度で計測できていることが分かる.次に、検査領域 の大小・検査領域の重複の有無に関して縦軸に変動係数 をとり、ひずみ計測の測定グリッド毎のばらつきを比較 した結果を図-6に示す.結果より、検査領域が大きいほ ど、また検査領域の重複が無いほどばらつきが小さく、 ひずみ計測の精度が高いことが分かる.

次に、画像解析で求めた最大主ひずみの分布により、 ひび割れを可視化した結果の比較を行った.図-7に各解 析条件での画像解析で得られた最大主ひずみの分布と、 実際に撮影した供試体の画像を示す.結果から検査領域 が小さい方がひび割れの分布をより詳細に示しているこ とが分かる.また実際の画像と比較すると、肉眼では判 別できないひび割れの分布が得られていることが分かる.

5. おわりに

本研究では、画像解析におけるひずみ計測の精度検証 で高い精度を得られる解析条件を確認できた. 且つ,ひ

図-7 ひずみ精度検証 (ひび割れ)

び割れの可視化も確認することができた.しかし,今回 は検査領域の大小,検査領域も重複の有無についての検 討に留まっているため,さらなる精度向上への解析条件 の検討が,今後の課題である.

参考文献

- 前田道雄,奥畑峻,石川憲一:デジタル画像相関法 を用いた全視野変形・ひずみ測定の精度評価研究, 日本機械学会論文集(C編), Vol.76,2010.
- 内野正和, 佐川康貴, 尾上幸造: デジタル画像相関 法を用いたコンクリート供試体のひずみ計測, 日本 機械学会, 年次大会講演論文集: JSME annual meeting 2006(1),833-834.
- 3) 車谷麻緒,松浦遵,根本忍:コンクリートのひび割 れ進展計測のための画像解析手法に関する基礎的研 究,土木学会論文集A2(応用力学),Vol.70,2014.