多孔質体内塩分水溶液の電気伝導度測定に関する基礎的研究

日本大学理工学部	正会員	下辺	悟
日本大学理工学部	正会員	齊藤	準平
日本大学理工学部	学生会員	○後藤	嘉彦
日本大学理工学部		坂本	康了

1. はじめに

2011年3月11日に発生した東日本大震災では津波によ る被害が甚大で,農地では塩分濃度約3%の海水による冠 水被害を受けた.土壌塩害となる塩分濃度は,農業用水の 基準値¹⁾を参考にすると0.1%以下である.基準値を大きく 超える塩分が土中に堆積し,田畑や緑化における作物の生 育ならびに植生の生態に大きく影響した.特に,緑化にお いては地域の植生を保全するために,土壌を除塩し再利用 することが望ましい²⁾とされる.そのためには,事前に土 壌の塩分濃度を調べるとともに,時系列で継続観測する必 要がある.

井上(2015)³⁾は,塩分濃度に関わる電気伝導度は温度に よる影響が大きく,その場の土中温度も同時に計測できる マルチプローブによる測定が必要であると述べている.ま た,マルチプローブに関する研究は,国内においてはほと んどなく,実証研究を必要としている.

本研究は、誘電率・温度・電気伝導度を同時計測できる マルチプローブである Hydra Probe II (以下, HP II と略称) を主に用いて、電気伝導度の計測結果から土中塩分濃度の 測定の可能性を検証することと基礎データの蓄積を目的 とする.

2. 実験概要

2.1 HPIにおける電気伝導度の信頼性の検討

HPIIでの電気伝導度の測定結果の信頼性を検討した. 水槽に蒸留水を張り,塩分濃度を0.2%ずつ上げ,そのときの水中の電気伝導度 ECwを,標準的な方法である ECメータ(CM-21P)の測定値と比較・検討した.

2.2 含水量・電気伝導度キャリブレーション実験

HPIIならびに別の土壌水分計の ADR を用いて,ガラス ビーズ(粒径の異なる3種類とその混合4種類)および山砂 (千葉県東金産)を試料として,蒸留水や食塩水(0.2%,0.4%, 0.6%)を液相としたキャリブレーションカーブを作成する. 各試料は所定の含水状態に設定し,供試体作製用モールド に詰めハーバード・ミニチュアコンパクターで9層に締固 める.作製した供試体表面に各センサを挿入し,誘電率 ϵ の諸量を求める.JIS 炉乾燥法により含水比 w を測定し, 体積含水率 θ_w や飽和度 S_r 等を算出し,誘電率や出力値と の関係を校正する.

2.3 小型土槽を用いた塩分濃度判定実験

小型土槽を用い、当該キャリブレーション実験の結果よ り得られた含水量・塩分濃度の範囲内で、それらを任意に 設定した試料をキャリブレーション実験と同様に締固め た.その後、土槽表面7か所に各センサを挿入し測定を行 った.測定された試料の ε_r , EC_b値(3.2で後述)を、事前 に得られた ε_r -EC_b、 ε_r - θ_w 関係のキャリブレーションカー ブにプロットし、 θ_w や塩分濃度を推定できるか検証する. また、塩分濃度計や JIS 炉乾燥法でそれぞれ塩分濃度,w や θ_w を求め、計測結果との整合性を確認する.

3.実験結果と考察

3.1 HPIにおける電気伝導度の信頼性の検討

HPII および EC メータの EC_w と塩分濃度の関係を図-1 に示す. なお, 図中には測定値と一次回帰式を併記した.

図-1 EC_w-塩分濃度 C の関係

その結果, HPIIの EC_wは 0.25%の塩分濃度までは EC メ ータとほぼ同じ値となったが, 0.25%より濃度が高くなる と低い EC_wが示された. 楊(2004)の研究と比較すると, ほ ぼ同じ線形となった. これより, HPIIで得られた塩分濃度 は 0.25%(EC_w<5dS/m)までは信頼できる. また, 塩分濃度 が 0.7%付近で HPIIが測定不能となり出力されなかった

キーワード 土壌塩害,塩分濃度,電気伝導度,含水量,マルチプローブ

連絡先 〒274-0063 千葉県船橋市習志野台 7-24-1 日本大学理工学部 TEL.047-469-5241 E-mail:shimobe.satoru@nihon-u.ac.jp

ため、本研究の実験で取り扱う塩分濃度の上限を 0.6%とした.

3.2 含水量・電気伝導度キャリブレーション実験

HPIIによる実験結果のうち、山砂の ε_r -EC_bの関係を図 -2に、 ε_r - θ_w の関係を図-3に示す.なお、両図の縦軸 は誘電率の実部 ε_r 、横軸は見かけの電気伝導度EC_b、体積 含水率 θ_w である.また、両図中に測定値とそれぞれの一次 回帰式、二次回帰式を併記した.

図-3 $\epsilon_r - \theta_w$ の関係

その結果, $\varepsilon_r - \theta_w$ の関係では塩分濃度の影響は小さいが, $\varepsilon_r - EC_b$ の関係では塩分濃度により様相が大きく異なった. この傾向は,センサの種類や試料が異なる場合でも同様で あった.また,図-2の実験定数 aの傾きは塩分濃度に大 きく依存したが,実験定数 bの切片は塩分濃度に関係なく ほぼ一定となった.図-3の実験定数 a,b,c は,塩分濃度 に依存せずほぼ同一の値が得られた.

図-3において,土壌水分の測定で多く使われている Topp et al.(1980)の実験式は,図中の火山灰土や有機質土を 除く,それ以外の試料である山砂の4つの二次回帰式と既 往の提案式に近いことが確認された.

3.3 小型土槽を用いた塩分濃度判定実験

図-4と図-5は、図-2、図-3の測定値を除きそれ ぞれの一次回帰式または二次回帰式を示したものである.

塩分濃度の判定手順を以下に記す. ①図-4のように, 本実験で得られた ϵ_r , EC_bの測定値を ϵ_r -EC_bの関係図上 にプロットし、各塩分濃度の一次回帰式に照らす.よって、 液相の塩分濃度が確認できる.②図-5では、図-3で得 られた回帰係数と①で得られた塩分濃度の両者から、 θ_w を 推定する.

図-5 塩分濃度の判定実験結果(θw)

その結果,実験で得られた $\varepsilon_c \ge EC_b$ から推定された塩分 濃度は, $EC \neq -\phi$ で測定した塩分濃度の誤差範囲(相対誤 差 10%)以内に収まった.同様に,推定された $\theta_w \ge JIS$ 炉 乾燥法の結果から算出した $\theta_w \ge h$ 材誤差 2.5%以内となり, 実用的に許容範囲であることがわかった.

4.結論

- マルチプローブ HPIIを用いることで、 Erや ECbを高 精度で同時測定できることがわかった.
- ② 塩分濃度や含水量をリアルタイムかつ簡便に測定す る本手法は、実用的でかつ有益な手法である。

引用・参考文献

- 農林水産省: VII水質・土壌に係る基準, http://www.maff.go.jp/j/seisan/kankyo/hozen_type/h_se hi_kizyun/pdf/05230112suisitu-dojou.pdf 2017.1.
- 国土交通省:東日本大震災からの復興に係る公園緑 地整備の基本的考え方(中間発表), http://www.mlit.go.jp/common/000168435.pdf, 2016.5.
- 3) 井上光弘:ユーザーから見た市販マルチセンサー (水分-塩分-温度)の評価,第57回シンポジウム 土壌物理学大会 発表要旨集,pp.18-35,2015.