日本大学理工学部	学生会員	○佐藤柳言
日本大字大字院埋工字研究科日本大学理工学部	字生会員 正会員	内田健太 高橋正行
日本大学理工学部	フェロー会員	大津岩夫

1. まえがき

一般に跳水中には空気が取り込まれ,多量の気泡が混入 された流れとなっている.スルースゲート下流側に形成さ れる跳水への流入射流は,乱流境界層の発達状態によって Undeveloped inflow (以下 UD と略す), Partially developed inflow (PD と略す),および Fully developed inflow (FD と 略す)に分けられる^{1),2)}.ここに,UD はスルースゲート下 流側の縮流部に跳水始端を位置させた場合,PD は乱流境界 層が発達中の射流に跳水始端を位置させた場合,FD は乱流 境界層が水面まで到達した断面よりも下流側の射流に跳水 始端を位置させた場合である.

Takahashi and Ohtsu³⁾は,高速度ビデオカメラを用いた 跳水内部への空気混入状況の観察と跳水内部の空気混入率 C [= 空気の体積 / (空気の体積+水の体積)]の測定値に 基づき, 流入射流の水面と跳水の表面渦先端との交点であ る impingement point 付近から空気が混入する場合と表面 渦の breaking によって空気が混入する場合の両方によって 跳水中に空気が混入することを示した.また,流入射流の 乱流境界層の発達状態が UD と PD ($\delta/h = 0.5$) (PD_{0.5} と 略す)の場合、流入射流の水面は滑らかで変動がなく、PD $(\delta/h = 0.8)$ (PD_{0.8} と略す) と FD の場合,水面に凹凸と 変動が生じることを指摘し、流入射流の水面の凹凸と変動 の有無が跳水内の advective diffusion region の空気混入率 C に影響を与えることを示した.ここに、 δ は乱流境界層厚 さ, h は水深である. しかしながら, 射流水面の凹凸と変動 は定量的に明らかにされておらず, 乱流境界層の発達状態 と水面変動との関係に不明な点が残されている.

本研究は,射流の水面変動と乱流境界層の発達状態との 関係について実験的検討を行い,跳水内部に流入する射流 の水面変動について定性的かつ定量的に明らかにしようと したものである.

2. 実験

実験は、スルースゲートを有する水路幅 B = 0.4 m の滑面 長方形断面水平水路を用いた.射流水面の凹凸と変動の開 始位置を定性的に明らかにするため、PD ($\delta/h = 0.5 \sim 0.8$) でのフルード数 $F_r = 4 \sim 8$, レイノルズ数 $R_e = 6.2 \times 10^4$ の 射流を対象に、高速度ビデオカメラ(露光時間 1/2000 s,撮 影速度 1000 fps)を用いて PD ($\delta/h = 0.5 \sim 0.8$)の範囲を 撮影し、水面の観察を行った.ここに、 $F_r [= V/\sqrt{gh}]$ はフ ルード数, g は重力加速度, V は断面平均流速, $R_e [= Vh/v]$ はレイノルズ数, v は水の動粘性係数である。射流の水面 変動を定量的に知るため、表 1 に示される条件の射流を対 象に、超音波水位計(採取間隔 10 ms,採取時間 200 s,設 置高さ 70 ~ 100 mm)を用いて評価断面の水路横断方向中 央部で水深 h を測定した.ここに,x は縮流部から評価断 面までの流下方向距離,T は水温である。評価断面は乱流 境界層の発達状態が UD, PD ($\delta/h = 0.3$, 0.5, 0.7, 0.75, 0.8, 0.9), FD ($x = x_{cp}$, 1.5 x_{cp} , 1.7 x_{cp} , 2 x_{cp}) になる断面を対象とした.なお,UD の場合はx = 0, PD の場合は $\delta/h = 0.3$, 0.5, 0.7, 0.75, 0.8 および 0.9 となるx, FD の場合は $x = x_{cp}$, 1.5 x_{cp} , 1.7 x_{cp} および 2 x_{cp} とした.ここに, x_{cp} は乱流境界層が水面に到達する critical point のx である(図1参照).

評価断面において,与えられた *F_r* と *R_e* のもとで乱流境 界層の発達状態を UD, PD, FD に変化させるため,Ohtsu and Yasuda の方法⁴⁾ を用いて δ , *h*, *x* を計算し,対象とす る射流が形成されるように単位幅流量 *q*,スルースゲートの 開口高 *a* を調整して実験を行った.なお,レイノルズ数 *R_e* は *R_e* ≥ 6.0×10⁴ のとき,自由跳水の流況に対する *R_e* の影 響がない⁵⁾ ことから, *R_e* = 6.2×10⁴ とした.

表1:水深測定の実験条件

I. A	F_r	$R_e \times 10^{-4}$	δ/h	h	x	Т	
Innow condition		(-)	(-)	(-)	(m)	(m)	(°C)
UD		7.2	6.2	0	0.0175	0	28
PD		7.2	6.2	0.3	0.0194	0.230	21
				0.5	0.0180	0.406	26
				0.7	0.0177	0.613	27
				0.75	0.0177	0.669	27
				0.8	0.0177	0.726	27
				0.9	0.0201	0.955	19
FD	$(x = x_{cp})$	7.2	6.2	1.0	0.0201	1.093	19
	$(x=1.5x_{cp})$				0.0204	1.647	18
	$(x=1.7x_{cp})$				0.0204	1.858	18
	$(x = 2x_{cp})$				0.0175	1.861	28

3. 射流の水面形状

評価断面の $F_r = 7.2$, $R_e = 6.2 \times 10^4$ の射流水面を高速度 ビデオカメラで撮影した一例を図 2 に示す.図 2 に示され るように,UD (図 2(a)) と PD_{0.5} (図 2(b))の場合は,射 流水面は滑らかで凹凸と変動が認められない.これは,UD では乱流境界層が未発達であり,PD_{0.5} では乱流境界層内の 乱れが水面まで影響を及ぼさないためと考えられる.一方, FD ($x = 1.7x_{cp}$)の場合 (図 2(d))は,水面の凹凸と変動が 認められる.これは,乱流境界層が水面に到達し,水面での 乱れが大きくなったためと考えられる.また,PD_{0.8}の場合 (図 2(c))は,FD ($x = 1.7x_{cp}$)の場合よりも水面の凹凸が 小さく変動は間欠的である.これは,乱流境界層内の乱れ が間欠的に水面まで達し,水面の凹凸と変動を誘起したた めと考えられる.

なお,上記結果を含む $F_r = 4 \sim 8$, $R_e = 6.2 \times 10^4$ の射流 水面の観察の結果, F_r の変化によらず, $\delta/h \approx 0.7 \sim 0.8$ で 射流水面に凹凸が生じ始めることが確認された.

キーワード:空気混入率,射流水面,水面変動,乱流境界層の発達状態 連絡先:〒101-8308 東京都千代田区神田駿河台1-8-14 日本大学理工学部土木工学科 TEL.03-3259-0676

れるように、 $0 \le \delta/h \le 0.7$ の場合、 $\sqrt{h'^2/h}$ はほぼ一定の値

である.これは、UD(図2(a))とPD_{0.5}(図2(b))の水面 の凹凸と変動は目視では観察されないことに対応している.

 $\delta/h = 1.0 \ (1.5 x_{cp} \le x \le 2 x_{cp}) \ \mathcal{O} \ \sqrt{h'^2}/\overline{h} \ \natural \ 0 \le \delta/h \le 0.7$

の $\sqrt{h'^2/h}$ に比べて大きい. これは, UD と PD_{0.5} の水面の

凹凸と変動は認められず(図 2(a), 2(b)), FD の水面の凹凸

と変動が認められた(図2(d))ことに対応し、乱流境界層が

十分に発達すると射流水面の凹凸と変動は大きくなること を示している. $\delta/h \gtrsim 0.7 \sim 0.8$ の場合, δ/h の増加に伴い

- 2) 高橋正行,大津岩夫:跳水内部の空気混入特性に対する
- 流入射流の影響,水工学論文集,53,985–990,2009. 3) Takahashi, M., Ohtsu, I.: Effects of inflows on air entrainment in hydraulic jumps below a gate, J. Hydr. Res., DOI:10.1080/00221686.2016.1238016, 2016.
- Ohtsu, I., Yasuda, Y.: Characteristics of supercritical flow below sluice gate, J. Hydr. Engrg., 120(3), 332-346, 1994.
- 5) 持田俊, 安田陽一, 高橋正行, 大津岩夫: 自由跳水の流 況形成に対するレイノルズ数の影響,土木学会年次講演 会概要集, 65, II 部門, 391–392, 2010. 6) Klebanoff, P.S.: Characteristics of turbulence in boundary
- layer with zero pressure gradient, NACA Rep., 1247, 1955.