津波規模が海岸樹木破壊形態に及ぼす影響の樹種による相違

	埼玉大学大学院	学生会員	五十嵐	善哉
	埼玉大学	学生会員	○君和田	祐弥
	埼玉大学大学院	学生会員	赤崎	佑太
)埼玉大学研究機構レジリエ	ント社会研究センター	・ 正会員	田中	規夫
地方独立行政法人北海道立総	合研究機構林業試験場	- 正会員	佐藤	长 創

地方独立行政法人北海道立総合研究機構林業試験場道南支場 非会員 鳥田 宏行

1. 背景及び目的

海岸林の津波被害軽減機能¹⁾は,特に1998年のパプ アニューギニア地震津波や2004年のインド洋大津波に より再認識され、熱帯の開発途上国における有力な津 波減災対策の一つとして注目された²⁾.日本の津波防災 対策には海岸林の有効性は長年位置づけられてこなか ったが、2011 年の東北地方太平洋沖地震津波では海岸 林の多くがなぎ倒されたものの,浮遊物の捕捉以外に, 家屋被害の低減効果が定量的に認められた³⁾.

埼玉大学大学院(兼)埼玉大学研究機構レ

レベル2津波への多重防御や生態系を基盤とした災 害リスク減少方策(Eco-DRR)において、海岸林による 津波減勢効果が注目されている.破壊された海岸林で も流失しない場合には抵抗として機能するので、破壊 現象を高精度で解析することが重要である. すなわち, レベル2 津波に対する海岸林の津波減災効果と機能の 限界(破壊や流木化等)を明らかにし,汎用的な耐津 波設計論として高めるための研究が必要である. ここ で,同じ津波であっても場所によって諸条件(津波の 状況,地形,林況)が異なるので,樹林帯効果を定量 評価するには、実樹木に関する抵抗特性の知見や実樹 木の幹折れや根鉢転倒限界の知見を取り込んだ数値解 析モデルが威力を発揮する. Tanaka ら³⁾は樹木の破壊 形態を破断と転倒の2種類に分類し、その破壊判定式 を二次元津波計算に組み込み、樹木破壊の傾向と破壊 後の樹木の減勢効果を求めている.また,田中ら⁴⁾は, 北海道白糠町の海岸防災林に対して詳細な海岸林破壊 の解析手法を構築し、枝下高が大きい樹木は幹の破断 が生じやすいこと、破断、転倒はそれぞれフルード数 が小、大の場合に生じること、転倒限界の小さいグイ マツはほぼすべてが転倒となったが、カシワは枝下高 が高いものは破断が胸高よりも高い位置で生じること, 樹木が破壊した状態でも、 樹冠が発達した樹木は抵抗 としての働きは大きいことなどを明らかにした.

上記を踏まえ,本研究では樹木の破壊形態として破 断,転倒が生じる要因をそれぞれ把握することを目的 とした. ただし、その地域で想定される最大規模のレ ベル2津波の計算ではほとんどの樹林帯が破壊される と考えられる. レベル2津波とレベル1津波の間の規 模の津波(レベル1.5津波と定義する)における樹林帯 の破壊状況の把握は減勢構造物の弱点分析という観点 で重要であるため、あわせて検討を行なうこととする.

2. 数値解析モデルの概要

対象地域の選定

田中ら⁴⁾は、北海道白糠町において海岸林による津波 の減災効果と2 つの樹木破壊形態(破断,転倒)につ いて検討している. 白糠町の樹林帯は枝下高が低いた め,海岸林のみの配置では樹木の破壊形態がグイマツ は全て転倒、カシワもほとんどが転倒であった.一方 で大樹町は樹木が十分に生育しているため、枝下高や 樹種による相違を検討することが可能である.

図-1 設定した5領域 (Google Earth より作成)

キーワード グイマツ,カシワ,転倒,破断,フルード数

連絡先〒338-8570 埼玉県さいたま市桜区下大久保 255 埼玉大学 TEL048-858-3564 E-mail: tanaka01@mail.saitama-u.ac.jp

(2) 樹林破壊・家屋破壊を含む津波の解析手法

a) 数値解析モデル

対象とする大樹町地域を含んだ計算を行えるように 領域を設定した(図-1).数値計算は、5つの領域(最外 領域 1350m メッシュ (A 領域) から 450m, 150m, 50m, 16.7m メッシュのそれぞれ B, C, D, E 領域へ境界条件を つなぐネスティング法を用いている. A 領域は線形長 波, B-E領域については非線形長波式を用いて津波計 算を行っている.ただし,E領域の非線形長波方程式は, 基礎方程式に底面摩擦以外の抗力項や乱れの生成・消 散を考慮した粘性項を追加している(詳細は,田中ら⁴⁾). 底面摩擦応力はマニングの粗度係数を用いて評価した. 粗度係数は、土地利用区分をもとに、海域・河川域(0.025)、 田畑域(0.02),森林域(0.03),工業用地域・湿原域(0.04), 中密度居住域(0.06)で与えた.樹木は抵抗体として取り 扱い,運動方程式の中に抗力項として組み込んである. その上で、計算中に後述する破壊・流失判定を行い、 時々刻々, 抗力係数を変化させて計算を行うものであ る⁴⁾. なお, 樹木の場合は空間に閉める占有率は小さい ので,連続式,運動方程式に占有率は考慮しなかった. 差分化は, 空間的には staggered grid, 時間的には leap-flog scheme を用いた.

b) 数値計算断面ならびに境界条件

標高データと断層モデルは、北海道庁⁶が2012年6月 に実施した「太平洋沿岸に係る津波浸水予測図作成業 務」において作成したデータを使用した.

津波の初期水位変位としては、Mansinha & Smylieの 式⁷⁾により断層変位を与えて、その変位を鉛直上の海域 の水位変位として与える.境界条件としては、A領域か らの流出量については、特性曲線法を基に自由透過さ せ、A - D領域については内陸部への遡上を考慮せず、 完全反射境界としている.E領域の陸上遡上を考える際 には、岩崎・真野⁸⁾の方法で流量計算を行った.

c) 対象地点の樹木被害特性と計算への設定方法

海岸林は E 領域にのみ配置している.対象樹種は, 海岸林の植生の大半を占めるグイマツとカシワとし た.樹形パラメータとして,樹高,胸高直径,枝下高, 枝・幹面積,葉面積を考慮した.岸沖方向に測定した グイマツ 191 本,カシワ 191 本のデータを,E領域のグ リッド毎に平均化し,簡易的にグリッド内の植生を表 現した.汎用性を持たせるため,田中ら⁴⁾と同様に,樹 木管理で使用されることの多い胸高直径の値から樹高 H を推定し、多くのパラメータと相関性があり、転倒限界にも関係する材積指標(胸高直径の二乗に樹高を乗じたもの: D²H)と関連付けた.表-1に、

$$y = kx^c \tag{1}$$

としたときの、グイマツとカシワの樹形パラメータ y, 説明変数 x, 係数 k, べき乗数 c, 相関係数の一覧を示 す.田中ら⁴⁾と同様に,枝下高と植生密度は胸高直径と の相関性が低いため回帰式は使用せずグリッド内平均 値を用いた.**表-2** に実測データから平均した各グリッ ドでの樹木パラメータを示す.

d) 樹木の破壊・流失判定モデル

破壊形態として破断と転倒のどちらか一方の破壊が 起きた後は,再破壊は起こらないとした.破断は,高 さ *X* において樹木主幹に働く破断モーメントと破断限 界モーメントを比較して判定した(田中ら⁴⁾,鳥田ら⁵⁾). 樹木主幹が破断する際の限界モーメントは,ある高さ*X* において,

$$M_{crix} = \sigma_{MAX} Z_X \tag{2}$$

とした.ここに、 σ_{MAX} は樹木主幹の曲げ強さ(樹木強 度試験よりグイマツ: 29.0 MPa, カシワ: 29.5 MPa)、 Z_X は断面係数であり、ある高さ X における幹直径 d_X を 用いると $Z_X = \pi d_X^{3}/32$ となる.

表-1 樹木特性一覧(D:胸高直径, H:樹高)

	樹形パラ	説明変数	係数	べき乗数	相関係数
	メータy	x	k	С	R
グイマツ	樹高H	D	38.45	0.7655	0.77
	枝下高	D^2H	7.2336	1.555	0.58
	葉面積	D^2H	37.712	1	1
	枝・幹面積	$D^{2}H$	10.53	0.667	1
	幹面積	$D^{2}H$	2.0754	0.5952	1
	枝面積	D^2H	8.4686	0.6879	1
カシワ	樹高H	D	36.077	0.6921	0.75
	枝下高	D^2H	7.9609	0.2844	0.68
	葉面積	$D^{2}H$	305.98	1	1
	枝・幹面積	$D^{2}H$	8.226	0.667	1
	幹面積	D^2H	2.0309	0.5651	1
	枝面積	$D^{2}H$	6.2921	0.7196	1

表-2 計算で設定した樹木特性

허네	汀線から		グイマツ	1		カシワ	
グリ N1-	の距離	胸高直	枝下高	樹木密度	胸高直	枝下高	樹木密度
NO.	[m]	径[m]	[m]	[本/m ²]	径[m]	[m]	[本/m ²]
1	70.9	0.1	4.28	0.22	0.06	1.79	0.096
2	141.7	0.1	5.08	0.328	0.12	5.27	0.1
3	212.6	-	-	-	0.21	6.69	0.088
4	283.4	-	-	-	0.19	6.74	0.128
5	330.6	-	-	-	0.24	6.88	0.064
6	401.5	-	-	-	0.18	6.42	0.1
7	472.3	-	-	-	0.16	4.93	0.12
8	543.2	0.24	7.31	0.028	0.17	5.33	0.06
9	614.1	0.23	7.07	0.076	-	-	-
10	684.9	0.22	7.29	0.084	-	-	-
11	755.8	0.25	6.47	0.028	0.14	6.85	0.008

樹木が転倒する際の限界転倒モーメント M_{criot} は材 積指標 $b_{ref}^2 H_t$ を用いて⁴⁾,以下のように与えられる.

$$M_{criOT} = k_O b_{ref}^2 H_t + k_C \tag{3}$$

ここに、 H_t は樹高(m)、 k_o 、 k_c は樹種別の係数で、現地 のグイマツとカシワで、10、10本の樹木引き倒し試験結 果を行って、(k_o , k_c)を、(57.3、0)、(93.9、0)とした. 根鉢 に働くモーメントは、地際におけるモーメントで計算 した.

破断後の樹木は樹高が破断した高さに変化すると し,破断高さより上部の樹木は流失するとした.転倒 後の樹木は地面から φ=30°の角度を保ち,樹高,投影面

図-4 樹林帯内部の最大浸水深(Case L2, L1.5)

積も変化すると考えた(詳細は田中ら4).

(3) 解析ケース

レベル2津波(Case L2)に加えて、レベル1.5津波(Case L1.5)についても樹林帯の効果を検討するため、レベル2 津波の初期水位変位として与えた断層変位に0.8 倍す ることでレベル1.5津波の初期水位変位とした。各ケー スにおける樹林帯前後における水位の時系列データを 図-2に示す。

3. 結果および考察

(1) 浸水範囲の比較による数値モデルの検証

図-3(a), (b)に北海道庁の計算による浸水範囲と本数 値モデルにおいて出力されたある時刻の浸水深コンタ 一図をそれぞれ示す.これらの比較より,浸水範囲や その形状をおおむね再現している.

(2) 林帯内部の津波の遡上と樹木破壊の関係

図-4に Case L2, L1.5 における林帯内部の最大津波浸 水深をグイマツ・カシワの枝下高,樹高と合わせて示 す.また,表-3に Case L2, L1.5 における樹種ごとの破 壊形態と破壊時刻を示す.図-4 及び表-3より,枝下高 と波高の大小関係によらず,グイマツは転倒破壊が生 じ,カシワは破断破壊が生じていることが分かる.

(3) 各樹種 (グイマツ・カシワ)の破壊形態

図-5の(a), (b)を比較すると、レベル2津波規模のとき、カシワの破壊形態は破断が主体であるのに対し、 グイマツの破壊形態は転倒が主体であることが分かる.

樹木が破断した場合,津波に対して働く抗力は,破 断高さより下部のみで生じることとなり,破断前より 抗力が減少し,さらに,破断により生じた流木が背後 地において家屋に衝突する等,二次被害が生じる可能 性がある.一方で,転倒が生じた場合,抗力は減少す るものの,流木化せずその場にとどまるため,背後地 に二次被害を与えないだけでなく,沖側から流れてく る浮遊物を捕捉する効果も有する.なお,5列目以降の カシワ(胸高直径24cm)は残存したことから,捕捉効 果が発揮できる.そのため,カシワに関しては樹林帯 陸側で直径の成長を促すことが重要と考えられる.

樹種ごとに主となる破壊形態が分かれた原因として, 胸高直径の影響が挙げられる. グイマツは,列 No.1-2 の樹林帯では胸高直径が 0.1 m と細く一部破断も見ら れるが, No.8-11 では 0.22 - 0.25 m と太くなっている. カシワについては海側からの列 No.が 3,5 の樹林帯を除

	Case L2				Case L1.5			
列	グィ	イマツ	マツ カシ		グイマツ		カシワ	
No.	破壊 形態	破壊 時刻[s]	破壊 形態	破壊 時刻[s]	破壊 形態	破壊 時刻[s]	破壊 形態	破壊 時刻[s]
1	転倒	2238.2	破断	2237.6	転倒	2286.2	破断	2286
2	転倒	2244.2	破断	2244.6	転倒	2295.2	残存	-
3	-	-	破断	2255.4	-	-	残存	-
4	-	-	破断	2259	-	-	残存	-
5	-	-	残存	-	-	-	残存	-
6	-	-	残存	-	-	-	残存	-
7	-	-	残存	-	-	-	残存	-
8	残存	-	残存	-	残存	-	残存	-
9	残存	-	-	-	残存	-	-	-
10	残存	-	-	-	残存	-	-	-
11	残存	-	残存	-	残存	-	残存	-
(a)	: グイ	マツ			(b) :	カシワ		

破断転倒残存

図-5 各樹種の破壊形態(左:Case L2,右:Case L1.5) くと,その胸高直径は全て 0.2 m を下回っており,グイ マツに比べて幹が細いため,カシワは破断が生じやす い.しかし,カシワも胸高直径が太く生育した場合, 残存もしくは破断ではなく転倒が生じる可能性もある. ただし,幹を太くするのが難しい場合,カシワより内 陸側に主に転倒破壊となるグイマツを配置することで, 破断により流木化したカシワをグイマツが捕捉し,背 後地に二次被害を与えないような工夫が必要である. (4) レベル 1.5 津波とレベル 2 津波の比較

レベル 1.5 津波規模になると、レベル 2 津波規模より も全体として残存が増加している.また、沖側のカシ ワ(列 No.1)においては、Case L2 では転倒・破断がそ れぞれ 42.9、57.1 %であったが、Case L1.5 では破断が 20.8 %増加し転倒が 20.8 %減少した.グイマツにおいて も変化量はわずかではあるが同様の傾向を示し、破断 が 0.6 %増加し転倒が 0.8 %減少し残存が 0.2 %増加した. これは、津波規模が小さい場合には流速が低くなり相 対的に高い浸水深まで耐えたためと考えられる.

レベル 1.5 津波については樹林帯の残存率が向上し たが、樹林帯の薄い部分においては陸側までカシワが 破断している.破断により発生した流木が内陸側の家 屋等に衝突し二次被害を与える可能性がある.樹林帯 幅が薄い箇所については、破断しやすいカシワだけで はなく、転倒破壊の生じるグイマツを配置するか、減 勢盛土と組み合わせる⁴⁾等の工夫が必要である.

4. 結論

樹木破壊を高精度に取り入れたモデルを使用し北海 道大樹町の樹林帯について検討した結果,以下のよう な樹木管理に資する知見が得られた.

(1) グイマツは転倒が生じやすくカシワは破断が生じ やすい.ただし、樹林帯の陸側で胸高直径が大きけれ ばカシワでも残存する.流木化せず津波に対して抵抗 として機能するグイマツもしくは太いカシワの陸側配 置が重要であることが示唆された.

(2) レベル 1.5 津波による樹林帯破壊の検討により,大 樹町の現況の樹林帯における弱点部分を指摘し,その 改善策を提案した.

謝辞 本研究の一部に、科学研究費補助金基盤研究 B(No. 15H02987,代表:田中規夫)を使用した.記して謝意を表します.

参考文献

- 1) 首藤伸夫:防潮林の津波に対する効果と限界,第 32 回海岸工学講演会論文集,pp.465-469,1985.
- Tanaka, N.: Vegetation bioshields for tsunami mitigation: review of effectiveness, limitations, construction, and sustainable management, Landscape and Ecological Engineering, Vol. 5, No.1, pp.71-79, 2009.
- 3) Tanaka, N., Yasuda, S., Iimura, K. and Yagisawa, J.: Comparison of the effects of coastal forest and those of sea embankment on reducing the washout region of houses in the tsunami caused by the Great East Japan Earthquake, J of Hydro-environment Research, Vol.8, pp.270-280, 2014.
- 田中規夫,庭田侑,佐藤創,鳥田宏行,野口宏典: 樹形による破断・転倒現象の相違を考慮した海岸林 管理に資する津波計算法の構築,土木学会論文集 B2(海岸工学), Vol.71, No.2, pp.I_307-312, 2015.
- 5) 鳥田宏行, 佐藤創, 真坂一彦, 阿部友幸, 野口宏典, 坂本知己, 木村公樹: 簡易モデルを用いた津波に対 する立木の抵抗性の評価, 日林誌, Vol.96, pp.206-211, 2014.
- 6) 北海道庁総務部危機対策局危機対策課防災グループ:太平洋沿岸に係る津波浸水予測図作成業務報告書,2013.
- Mansinha, L. and Smylie, D.E. :The displacement fields of inclined faults, Bulletin of the Seismological Society of America, Vol.61, pp.1433-1440, 1971.
- 岩崎敏夫,真野明:オイラー座標による二次元津波 遡上の数値計算,第26回海岸工学講演会論文集, pp.70-74, 1979.