SRC 施工時の初期応力の影響に関する研究

前橋工科大学 学生会員 ○清水宥敬 正会員 谷口望 鉄道総合技術研究所 仁平達也 濱上洋平

1. はじめに

近年、施工条件の制約を受ける箇所において有 利であることから、鉄骨鉄筋コンクリート(SRC) やコンクリート充填鋼管といった複合構造物が多 く用いられる様になった。SRC 部材は、コンクリ ート内に鋼を埋め込むことで、外力に対して一体 となって抵抗し、耐荷性、耐久性を向上させた構 造である。SRC部材の施工は、まず鉄骨を架設し、 その後コンクリートが打ち込まれる。 方法では、コンクリートが固まる前に、鉄骨にそ の自重とコンクリートの重さが掛かってしまう。 これにより、鉄骨はたわんだ状態で固定され、初 期応力が生じる1)。現在、この時に発生する応力 は、曲げ耐力算定に考慮されていないことが多い。 そこで、本研究では、この初期応力が曲げ耐力に 与える影響を検証することを目的とし、有限要素 法解析コード FINAL を用いて行った。

2. 実験方法

試験体 (図-1) は表-1 の材料を用いて製作され、 試験体 No1、No2 の 2 体 (以下、CASE1, CASE2) に載荷試験を行った。 CASE1 は初期応力なし、 CASE2 は、降伏応力の $61\%(914\mu)$ を導入して試 験体を作製したが、試験開始時には $18\%(274\mu)$ に 低下していた。 CASE2 の初期応力は、鋼材のみを 設置後、センターホールジャッキにより導入した。

載荷試験は、純曲げ区間 250mm の対称 2 点集 中載荷の単調静的載荷試験とし、試験体が圧壊に 至るまで鉛直荷重を加えるものとした(図-2)。

図-1 実験の様子 表-1 使用材料

コンクリート	圧縮強度	35.9N/mm²
	引張強度	$2.5\mathrm{N/mm^2}$
鉄筋	引張強度	519N/mm ²
D10 (SD295A)	降伏応力	400N/mm ²
鉄骨	引張強度	434N/mm ²
(SS400)	降伏応力	300N/mm ²

800 700 600 (NX) 500 | 世紀 400 | 世紀 300 200 100 0 5 10 15 20 スパン中央の鉛直変位(mm)

図-2 実験結果 荷重-変位曲線

キーワード SRC 複合構造物 初期応力 FEM 連絡先 〒371-0816 群馬県前橋市上佐鳥町 460-1

前橋工科大学 社会環境工学科 TEL.027-265-0111

3. 解析方法

解析では、コンクリート、鉄骨をソリッド要素、 鉄筋をビーム要素として試験体モデル(図-3)を作成した。CASE1を解析後、そのモデルに初期応力 を導入し、CASE2の解析を行った。初期応力は、 各要素の降伏強度をそれに対応する初期応力の分 引くことで導入した。なお、載荷等曲げ区間(スパン中央 1000mm)のみ初期応力を導入している。 また、実験値と FEM 解析値でコンクリートのひ び割れ荷重に差異があったため、コンクリートの 引張強度を減らし、実験時の状態に近づけた。

材料構成則は、鋼材、鉄筋はバイリニア型、コンクリートは引張軟化特性においてはコンクリート標準示方書を、圧縮ひずみ特性においては修正 Ahamad のモデルを用いた。

4. 結果とまとめ

FEM 解析の結果は、図-4~図-6の通りとなった。 解析において、CASE1,CASE2 は降伏荷重に 17% 差が生じている。一方、実験では両者の差はあま りなく、実験と解析で異なる結果となった。理由 としては、実験での初期応力導入時にコンクリー ト強度にも影響が出ていた可能性もあるが、今後 の検討課題である。

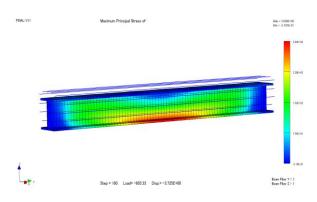


図-4 鉄骨下フランジの降伏時のコンター図

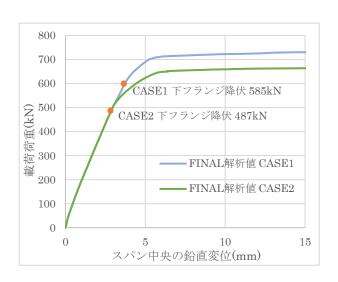


図-5 CASE1,2 の比較 荷重-変位曲線

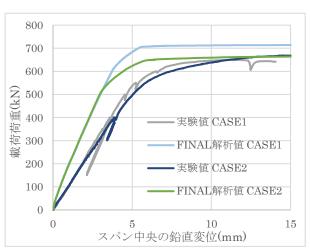


図-6 解析値と実験値の比較 荷重-変位曲線 参考文献

 河村ほか: コンクリート打込み時の鋼材の初期応力度を考慮した合成部材の耐力評価 鉄道総研報告 Vol.28, No.1 (pp.17-22), 2014