等方性および異方性弾性体の接着不良箇所に対する 非線形超音波法適用の検討

1. はじめに

近年, FRP(Fiber Reinforced Plastic)の土木構造物への応 用が進んでいる. FRP は航空分野等で先行適用され, 軽量で 優れた引張り強度を有するといった利点を持つ. 現状の土 木構造物では, 主要部材としてはさほど利用されておらず, FRP をコンクリート等の等方性材料の補強等に用いる場合 が多い. しかしながら, その際, FRP が正しく構造物に接着 されているか否か等が問題となる. そこで, 本研究では, FRP が音響異方性を示すことからこの問題を等方性と異方性材 料の接着問題として捉え, 未接着部分に対して最新の非線 形超音波法を適用する基礎的検討を数値シミュレーション ベースで行うことを目的に研究を行う.

2. 解くべき問題

図1のような領域 D^I から領域 D^{II} へと入射超音波が伝 搬する時の原点対称の長さ 2a の未接着部分 d による入射 波の反射・透過・散乱問題を考える. 領域 D^I, D^{II} はそれ ぞれ等方性, 異方性弾性体とし, 接着面 S^I, S^{II} は未接着部 d を除いて完全接着されているとする. また, 簡単のため, 以下の数値解析では 2 次元純面外問題を対象とする. その ため, 領域 D^{II} において異方性弾性体を扱う場合は, 異方性 の主軸は図 1 における座標軸に一致するものとし, 面外方 向は紙面に垂直方向に取る. この場合, 領域 D^I, D^{II} の境界 S^I, S^{II} に対して, それぞれ次の積分方程式が成り立つ.

$$C^{I}(\boldsymbol{x})u_{3}^{I}(\boldsymbol{x},t) = u_{3}^{\text{in}}(\boldsymbol{x},t) + \int_{S^{I}} U_{33}^{I}(\boldsymbol{x},\boldsymbol{y},t) * t_{3}^{I}(\boldsymbol{y},t) \, dS_{y} \\ - \int_{S^{I}} T_{33}^{I}(\boldsymbol{x},\boldsymbol{y},t) * u_{3}^{I}(\boldsymbol{y},t) \, dS_{y}$$
(1)

$$C^{II}(\boldsymbol{x})u_{3}^{II}(\boldsymbol{x},t) = \int_{S^{II}} U_{33}^{II}(\boldsymbol{x},\boldsymbol{y},t) * t_{3}^{II}(\boldsymbol{y},t) \, dS_{y} - \int_{S^{II}} T_{33}^{II}(\boldsymbol{x},\boldsymbol{y},t) * u_{3}^{II}(\boldsymbol{y},t) \, dS_{y}$$
(2)

ここで、* は時間に関する畳込み積分を表す. また領域 β (= *I* or *II*) における物理量等を右上添字で表すことに注意すれ ば、 u_3^{β} および t_3^{β} はそれぞれ領域 β での面外方向変位およ び対応する表面力、 $C^{\beta}(\mathbf{x})$ は位置 \mathbf{x} における境界形状に依 存する自由項である. また、 $U_{33}^{\beta}(\mathbf{x},\mathbf{y},t), T_{33}^{\beta}(\mathbf{x},\mathbf{y},t)$ は、そ れぞれ領域 β における面外動的基本解、および対応する二重 層核、 $u_3^{in}(\mathbf{x},t)$ は入射波を表す. なお、本研究では式 (1),(2)

〇群馬大学	理工学部	学生会員	森川光
群馬大学	大学院理工学府	学生会員	市川諒
群馬大学	大学院理工学府	正会員	斎藤隆泰

の計算に演算子積分時間領域境界要素法¹⁾を用いる.その 詳細は省略する.

3. 境界条件の扱い

時間領域境界積分方程式 (1),(2) は,以下の接着面 S^I, S^{II} における境界条件を与えることで解くことができる.

(1) 完全接着部分

まず,完全接着部分では変位と表面力に関して,それぞれ 次の連続条件を与える.

$$u_3^I(\boldsymbol{x},t) = u_3^{II}(\boldsymbol{x},t) \tag{3}$$

$$t_3^I(\boldsymbol{x},t) + t_3^{II}(\boldsymbol{x},t) = 0$$
(4)

(2) 未接着部分

未接着部分については, stick 状態と slip 状態に分ける. た だし, ここで扱う stick 状態とは, 向かい合う接着面は接触 してはいるが, 変位 u₃ が接着面において不連続な状態もあ り得ると仮定した場合であり, 変位 u₃ が常に連続である完 全接着状態とは異なることに注意する. すなわち, 時刻 t に おける stick 状態は次のように表される.

$$u_{3}^{I}(\boldsymbol{x},t) \neq u_{3}^{II}(\boldsymbol{x},t),$$

$$t_{3}^{I}(\boldsymbol{x},t) + t_{3}^{II}(\boldsymbol{x},t) = 0, \frac{\partial [u_{3}(\boldsymbol{x},t)]}{\partial t} = 0$$
(5)

ただし [*u*₃(*x*, *t*)] は向かい合う境界における面外方向相対 変位を示している.一方で, slip 状態を, 向かい合う接着面 が接触してはいるが, 接着面における面外方向滑りを許容 した接触状態であると仮定すると, slip 状態は,

$$u_{3}^{I}(\boldsymbol{x},t) \neq u_{3}^{II}(\boldsymbol{x},t), \frac{\partial [u_{3}(\boldsymbol{x},t)]}{\partial t} \neq 0$$

$$t_{3}^{I}(\boldsymbol{x},t) + t_{3}^{II}(\boldsymbol{x},t) = 0,$$
ただし,
$$t_{3}^{I}(\boldsymbol{x},t) = \mu_{f}N$$
(6)

で表される. ただし μ_f は摩擦係数, N は垂直方向の表面力 を表す. すなわち, stick 状態では, 変位の相対速度 [u₃(**x**, t)]

図 2 D^I(等方性)の群速度曲線. 図 3 D^{II}(異方性)の群速度曲線.

がゼロとなるが, slip 状態ではゼロとならないことに注意 する. 一方で, いずれの場合も表面力 *t*₃ は連続である.

このように、未接着部分における接着状態を、stick 状態, slip 状態のいずれかで表現し、stick 状態から slip 状態, slip 状態から stick 状態への境界条件の変化は、各時刻毎に変位 や表面力の値に応じて決定され、時々刻々と変化すること となる. また、境界条件の転移は次のような状態で起こる. すなわち、stick 状態において、面外方向表面力の大きさが $\mu_f N$ を超えた場合、境界条件は slip 状態へと転移する. 一 方、slip 状態において、相対速度がゼロとなる場合は stick 状 態へと転移する. こうして、毎時間ステップ毎に、不完全接 合部における各境界要素が stick 状態、slip 状態のいずれに 当てはまるかを繰り返し計算により判定しながら、境界条 件を定め、時間域境界要素解析を行うことで、境界上の未知 量を逐次、決定していくこととなる. 詳細は文献²⁾等を参 照されたい.

4. 数值解析例

数値解析例として, 図1において, 領域 D^I を等方性, 領 域 D^{II} を一方向 (水平方向) 繊維強化 FRP とした場合の結 果を示す. 入射波を中心周波数 $f_0 = 2$ MHz の正弦連続 5 波 とし、入射波は x2 軸に平行に未接着部分に対して垂直入 射させる. 解析で用いたパラメターは、総時間ステップ数 n = L = 1024,時間増分 $\Delta t = 5.0 \times 10^{-3} \mu s$ とし,境界 S^{I} , S^{II} は適当な長さで打ち切った. また, 領域 D^{I}, D^{II} におい て,解析に寄与するフォークト標記された弾性定数はそれぞ れ $C_{66}^{II}/C_{66}^{I} \simeq 0.13, C_{55}^{II}/C_{66}^{II} \simeq 2.02,$ 密度は $\rho^{II}/\rho^{I} \simeq 0.59$ で与えた.参考までに,各領域 D^I, D^{II} で伝搬する超音波の 群速度曲線を、それぞれ図2、3に示す.ただし、それぞれの 群速度曲線は $\sqrt{C_{66}^{\beta}}/\rho^{\beta}$ で無次元化されていることに注意 されたい. 解析の対象とした面外波動はそれぞれ図2にお ける S 波および図 3 における qS2 波である. 図 2,3 より, FRP を想定した領域 D^{II} における qS2 波は x₂ 方向に比べ て x1 方向にやや速く伝搬する. すなわち, 繊維強化の影響 が現れている.

図 4 に図 1 における領域 D^{II} 中の座標 $(r, \theta) = (2\text{mm}, 90^\circ), (2\text{mm}, 75^\circ), (2\text{mm}, 60^\circ)$ において計算された

図4 領域 $D^{II}(r = 2$ mm, $\theta = 90^{\circ}, 75^{\circ}, 60^{\circ})$ における時間波形の フーリエスペクトル.

時間波形のフーリエスペクトルを示す. ただし, 図 4 中の フーリエスペクトルの値は中心周波数 $f_0 = 2$ MHz におけ るフーリエスペクトルの値で正規化されていることに注意 されたい.

図4より,いずれの θ の場合においても,入射波の中心周 波数 $f_0 = 2$ MHzに対応するフーリエスペクトルが卓越し ていることを見て取れる.一方, $\theta = 90^\circ$,75°の場合は,中 心周波数 f_0 の3倍の周波数においてもフーリエスペクト ルが卓越しており, $\theta = 90^\circ$ の方が大きな値を示している. すなわち,非線形超音波が発生していることがわかる.同 様に,中心周波数 f_0 の5倍の周波数においてもフーリエス ペクトルが若干ではあるが卓越していることも見て取れる. 一方, $\theta = 60^\circ$ の場合は,中心周波数 f_0 の3倍,5倍の周波 数成分のフーリエスペクトルの卓越を確認することはでき なかった.

通常の超音波非破壊検査では,各領域 D^I, D^{II} における 音響インピーダンスの差が原因で大きな反射・散乱波が発 生するため,未接着部分からの散乱波が接着面自体からの 散乱波によって埋もれる可能性がある.しかしながら,本研 究で示すような非線形超音波の利用は,そのような欠陥を 検出できる可能性を持っていることがわかる.

5. おわりに

2次元面外波動問題を対象に, FRPの未接着部分に対す る非線形超音波のシミュレーションを行った.未接着部分 を透過した波動は,非線形成分を含むことが確認出来た.今 後は面内波動問題への拡張や,計測実験による検討を行う 予定である.

参考文献

- 福井卓雄・斎藤隆泰: Lubich の演算子積分法における高速多 重極法,日本シミュレーション学会論文誌,小特集:境界要素 法の新展開, vol.28, No.3, pp.17-22, (2009).
- 2)斎藤隆泰・古田雄輔・廣瀬壮一・中畑和之:2次元動弾性時間 領域境界要素法を用いた非線形超音波法における高調波の励 起シミュレーション,土木学会論文集 A2(応用力学), Vol.67, No.2, pp.161-169, (2011).