東京都市大学大学院	学生会員	〇石川	喜章

- 東京都市大学 正会員 末政 直晃
- 強化土エンジニヤリング株式会社 正会員 佐々木 隆光

1. はじめに

近年,大規模地震に向けた液状化対策や耐震補強などの本設用途として薬液注入工法を利用される場合が増えて きている.薬液注入工法は既設構造物を破壊することなく地盤を改良できることから,他の地盤改良工法に比べて 優位性があり適用される場合が多い.しかし,薬液注入改良体が高い強度を示すことは確認されているが,その強 度発現メカニズムは明らかとなっていない.本研究では,薬液注入による改良効果の発現は,土間隙中の薬液注入 材の圧縮強度に加えて,薬液注入材の体積収縮に起因する土粒子骨格の拘束効果に依存すると提案し調査を行って いる.本報告では、シリカゾル(ホモゲル)が体積変化する際に生じる収縮圧力の測定を行った結果を報告する.

2. シリカゾルの体積変化率と一軸圧縮強度¹⁾

シリカゾルの体積変化率 ε_v と一軸圧縮強度 q_u および、その注入材によって改良されたサンドゲルの一軸圧縮強度 q_{us} の経時変化を図-1に示す.ホモゲルの特徴として、体積変化率は収縮

(マイナス値を示す)し、一軸圧縮強度は経時的に増加し、い ずれも一定値に収束する.サンドゲルの一軸圧縮強度はシリカ 濃度が高い場合は強度低下することなく増加するが、低い濃度 では初期に増加した後、強度が低下し、いずれもその後は一定 値に収束する.また、サンドゲルの一軸圧縮強度はいずれの濃 度においてもホモゲルより高い値を示す.なお、強度が低下す る要因としては、過剰な体積収縮が生じた場合、砂と薬液との 付着が剥離することや、土粒子間での薬液のシリカゲルのネッ トワークが遮断されたと想定している.

3. 薬液注入改良体の強度発現メカニズム²⁾

非アルカリ系注入材の特徴から、一連のせん断試験結果よ り、図-2に示す強度発現メカニズムを提案した.薬液注入改良 体の強度増加を①ホモゲルの収縮に伴い土粒子の骨格に生じる 拘束圧 $P_1(収縮効果)$ ②圧縮載荷時にホモゲルが土骨格の変形に 応じて拘束する圧力 $P_2(バンド効果)$ ③ゲルの粘着力による仮想 拘束圧 $P_3(粘着効果)の重ね合わせによることを示し、さらに間$ 隙のゲルによるダイレイタンシー増大効果により増加した内部 $摩擦角 <math>\varphi$ を用い、一軸圧縮強度 q_u を想定する式 1 を提案した.

$$q_u = \frac{2\sin\phi'}{1-\sin\phi'}(P_1 + P_2 + P_3) \cdot \cdot \cdot (\pm 1)$$

図-3 は実測値と式1による推定値の qu を比較したものである. 薬液注入改良体の強度発現が落ち着く 14 日後は実測値と測定値が近い値を示していることがわかる.

図-1 シリカゾルの体積収縮率と一軸圧縮強度¹⁾

図-2 強度発現メカニズム²⁾

4. 試験概要

ロードセルを介し、マイクロメータで間隔調整できる二枚平行の ガラス盤を有する装置を用い、ガラス盤間にシリカゾルを注入させ て、体積収縮に伴う収縮圧の測定を所定時間ごとに行った.

5. 試験結果

図-4 にシリカ濃度 6%,図-5 にシリカ濃度 12%の収縮圧力の経時 変化を示す.収縮圧力はシリカゾルが高さ方向に縮まる力を正の力 とした.いずれのケースにおいても、シリカゾルの収縮に伴い、非 常に大きな圧力が発生していることを確認した.シリカ濃度 12%の 層厚 0.3mm のケースを除いて、層圧を小さくするほど収縮圧力は大 きくなる傾向を示した.また、シリカ濃度 6,12%の層厚 0.3mm を除 いて、層圧を小さくするほど強度低下までの材令は長くなる傾向を 示した.最大収縮圧力に達したあとは、0kPa まで急激に低下するケ ースと、強度が低下したあと再び強度が増加するケースの 2 種類を 確認した.再び強度が増加する原因としては、シリカゾルがガラス 盤から完全に剥離されず、その後剥離されていない部分で収縮圧力 が小さく上昇したと考えられる.

図-6 にシリカ濃度 6%,図-7 にシリカ濃度 12%の体積収縮率と収縮圧力の関係を示す.シリカ濃度 6%では、いずれのケースにしても体積収縮率 5%未満で最大収縮圧力に達し剥離する傾向を示した.シリカ濃度 12%では、層厚 0.5mm のケースは他のケースと比較し、非常に大きな体積収縮率まで収縮圧力は上昇を続け、他のケースは. 体積収縮率 8%未満で最大収縮圧力に達し剥離した.

図-8に層圧と最大収縮圧力の関係を示す.なお,測定に失敗した と考えられるシリカ濃度 12%の層厚 0.3mm 以外をプロットした.層 厚が小さくなるほど,最大収縮圧力が大きくなる傾向を示した.こ の結果から,実際の土粒子間隙は非常に小さなものであるため,大 きな収縮圧力が作用すると考えられる.また,土粒子の粒径が小さ くなるほど,土粒子間隙が小さくなるため,最大収縮圧力が上昇 し,改良効果が上昇する可能性が指摘できる.シリカ濃度で比較す ると,いずれのケースにおいても最大収縮圧力は 6%より 12%の方が 大きい傾向を示した.

6. まとめ

層厚 0.5mm 以下の測定結果は予想に反するケースが多く見られ た.このような層厚の測定結果を除き,層厚を小さくするほど最大 収縮圧力は大きくなる傾向が見られた.今後は層厚 0.5mm 以下での 測定の検討,他に異なる薬液や濃度での測定を行う予定である.

7. 参考文献

1) 佐々木ら:薬液注入材の体積変化に伴う拘束効果に関する検討,
第 50 回地盤工学研究発表会,D-10,297,pp.595-596,2015
2) 諏訪ら:薬液改良体の強度予測に影響する改良体構成要素の諸特

性, 第 41 回地盤工学研究発表会, D-06, 395, pp.789-790, 2006

図-4 収縮圧力の経時変化(シリカ濃度 6%)

図-5 収縮圧力の経時変化(シリカ濃度 12%)

図-6 体積収縮率と収縮圧力(シリカ濃度 6%)

図-7 体積収縮率と収縮圧力(シリカ濃度 12%)

